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The widespread popularity and use of both the Poisson and the negative binomial models for count data
arise, in part, from their derivation as the number of arrivals in a given time period assuming exponentially
distributed interarrival times (without and with heterogeneity in the underlying base rates, respectively).
However, with that clean theory come some limitations including limited flexibility in the assumed un-
derlying arrival rate distribution and the inability to model underdispersed counts (variance less than the
mean). Although extant research has addressed some of these issues, there still remain numerous valuable
extensions. In this research, we present a model that, due to computational tractability, was previously
thought to be infeasible. In particular, we introduce here a generalized model for count data based upon
an assumed Weibull interarrival process that nests the Poisson and negative binomial models as special
cases. The computational intractability is overcome by deriving the Weibull count model using a polyno-
mial expansion which then allows for closed-form inference (integration term-by-term) when incorporat-
ing heterogeneity due to the conjugacy of the expansion and a commonly employed gamma distribution.
In addition, we demonstrate that this new Weibull count model can (1) model both over- and underdis-
persed count data, (2) allow covariates to be introduced in a straightforward manner through the hazard
function, and (3) be computed in standard software.
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1. INTRODUCTION

The widespread popularity of the Poisson model for count
data arises, in part, from its derivation as the number of arrivals
in a given time period assuming exponentially distributed inter-
arrival times. But of the thousands of other count models that
have been developed over the years (see Wimmer and Altmann
1999 for an excellent synthesis), very few share this straightfor-
ward connection between a count model and its timing model
equivalent. The connection between a count model and a tim-
ing process is more than just a theoretical nicety: in many dif-
ferent contexts, it is useful—if not essential—for a researcher
to be able to estimate a model using one form (timing or count-
ing) but apply it using the other. As but one example, marketing
managers frequently collect interarrival time data (often in the
form of a recency question) but want to make predictions of
the number of arrivals (purchases) that a particular customer is
likely to make over the next year.

Furthermore, the Poisson count model is truly valid only in
the case where the data of interest support the restrictive as-
sumption of equidispersion, that is, where the variance of the
data equals the mean. Statisticians have recognized this limi-
tation for many years, and now routinely use models that al-
low for overdispersion (i.e., datasets marked by a fatter, longer
right tail than the Poisson can accommodate). A heterogeneous
gamma-Poisson model (i.e., the negative binomial or NBD) is
generally the first count model invoked for this common sit-
uation. But what about datasets with the opposite problem,
namely, underdispersion? Statisticians have acknowledged and
addressed this issue in different ways (King 1989; Cameron and

Johansson 1997; Cameron and Trivedi 1998), but with the pos-
sible exception of a count model featuring gamma-distributed
interarrival times proposed by Winkelmann (1995), none of
these underdispersed count models (to the best of our knowl-
edge) offers the conceptual elegance and usefulness of the
Poisson-exponential connection.

Winkelmann (1995) readily admitted the limitations of his
gamma-based model. Among other reasons, he commented on
the inability to obtain a closed-form hazard function for the
gamma, which makes the incorporation of explanatory vari-
ables an ad hoc process when compared to the standard Poisson
or NBD “regression” models. He pointed out that “the Weibull
distribution is preferred in duration analysis for its closed-form
hazard function. . . ” but did not pursue such a model. The devel-
opment and exploration of such a model is the main objective
of the present article.

Before we develop our Weibull count model, we first set the
stage by laying out the main properties that the Weibull count
model developed here embodies.

(1) The model generalizes (nests) the most commonly used
extant models such as the Poisson and the NBD as spe-
cial cases; thus, when a simple structure is sufficient, the
researcher will see it through the estimated model pa-
rameters. Furthermore, standard inferential procedures
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(e.g., the likelihood ratio test) can be used to compare
different specifications.

(2) The model handles both overdispersed and underdis-
persed data, both of which are likely to be seen in prac-
tice.

(3) Researchers who believe that the interarrival times of
their dataset are Weibull distributed now have a corre-
sponding counting model to use.

(4) The model is computationally feasible to work with: it is
estimable without requiring a formal programming lan-
guage or time-consuming simulation-based methods.

(5) The model allows for the incorporation of person-level
heterogeneity reflecting the fact that individuals’ interar-
rival rates may vary quite substantially across the popu-
lation.

(6) The mechanism required to incorporate covariate effects
is clear and simple. This process is consistent with stan-
dard “proportional-hazards” methods, which represent
the dominant paradigm for ordinary single-event timing
models.

In this article we derive a new model for count data that sat-
isfies these six criteria in the following ways. First, our count
model is based upon an assumed Weibull interarrival process,
which nests the exponential as a well-known special case. Sec-
ond, we demonstrate that the Weibull count model, via the
shape parameter being less than, equal to, or greater than 1, can
capture overdispersed, equidispersed, and underdispersed data,
respectively. Third, the Weibull interarrival time story is richer
than the exponential story, because it allows for nonconstant
hazard rates (duration dependence). Fourth, we implement the
model entirely in standard software. This is accomplished by
deriving our model using a polynomial expansion (which can
be expressed in closed form). See Bradlow, Hardie, and Fader
(2000), Everson and Bradlow (2002), and Miller, Bradlow, and
Dayaratna (2006) for similar polynomial expansion solutions
for the negative binomial, beta-binomial, and binary logit mod-
els, respectively. Fifth, and related to the previous point, once
the model is expressed as a closed-form sum of polynomial
terms, we can easily introduce a conjugate mixing distribu-
tion (the gamma distribution) to capture the underlying disper-
sion in incidence rates across individuals. This ensures that our
model nests the NBD in addition to the Poisson. Finally, we will
demonstrate that we can use the proportional-hazards approach
to introduce covariates in a very natural manner.

The remainder of this article is laid out as follows. In the
next section, we provide a more detailed description of the ma-
jor ways in which other researchers have extended basic count
models (but rarely with an eye toward maintaining a known in-
terarrival timing process). Section 3 contains the derivation of
our Weibull count model, focusing on the polynomial expan-
sion that leads to the closed-form benefits. In Section 4 we re-
analyze the same data used by Winkelmann (1995) and provide
a set of results comparing a sequence of nested models, the
most complicated of which has an underlying Weibull arrival
process, heterogeneous baseline rates, and covariates. Through
the sequence of models that we fit, we are able to ascertain
which aspects of the model are most critical. Finally, we pro-
vide some concluding remarks and areas for future research in
Section 5.

2. PRIOR RELATED RESEARCH

The primary way in which this research contributes to the
literature on count data is by generalizing the underlying in-
terarrival timing model to allow for greater flexibility in its
hazard function, which is how flexible forms of dispersion are
accounted for (as described later). For example, Winkelmann
(1995) offered a careful analysis of a counting model based on
gamma-distributed interarrival times and discussed the relation-
ship between the nature (i.e., slope) of the timing model hazard
function and the type of dispersion seen in the equivalent count
data. In particular, if we denote the mean of the interarrival dis-
tribution by μ, the variance by σ 2, and the hazard function by

h(t) = f (t)

1 − F(t)
,

where f (t) and F(t) are the density and cumulative probability
functions, respectively, we say that the distribution has negative
duration dependence if dh(t)/dt < 0 and positive duration de-
pendence if dh(t)/dt > 0. If the hazard function is monotonic,
then

dh(t)

dt
> 0 ⇒ σ

μ
< 1,

dh(t)

dt
= 0 ⇒ σ

μ
= 1,

dh(t)

dt
< 0 ⇒ σ

μ
> 1

(see Barlow and Proschan 1965, p. 33). These three cases corre-
spond to count data characterized by underdispersion, equidis-
persion, and overdispersion, respectively.

Focusing on nonconstant hazard rates (as above) is but one
way in which researchers have extended count models; we dis-
cuss some other methods briefly. Another way to capture the
same kinds of patterns seen in duration-dependent models is to
assume that the probability of an event occurring depends on the
number of events that have occurred previously, as opposed to
the arrival time of the most recent event (duration dependence).
These models are said to display contagion. For instance, they
have been studied in the literature on accident proneness (Ar-
bous and Kerrich 1951; Feller 1943). For more information,
one can reference Gurland and Sethuraman (1995) for a con-
tagious discrete- time model that leads to the negative binomial
in which an occurrence increases and a nonoccurence decreases
the probability of a future occurrence. Other models for oc-
currence dependence have been developed by Mullahy (1986)
and Gourieroux and Visser (1997). One can also make the as-
sumption that successive events are independent but the process
intensity varies as a function of time. This class of models is
known as nonhomogeneous Poisson processes and is described
in Lawless (1987). We believe that a promising area for future
research would be a comparison of both forms of dependence
(duration and occurrence), although here we focus only on the
former.

Beyond an explicit focus on any kind of time dependence,
there are many other distributions that have been formulated
to be able to accommodate underdispersed as well as overdis-
persed data. Researchers such as Bening and Korolev (2002),
Cameron and Trivedi (1998), King (1989), and Shmueli,
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Minka, Kadane, Borle, and Boatwright (2005) have proposed
and discussed a wide variety of generalized count models that
can handle overdispersion and underdispersion. But few (if any)
offer the benefits or elegance of something like the Poisson-
exponential connection. In the next section we lay out our
model that fully respects this connection and also offers a great
deal of flexibility in being able to capture a range of count data
dispersion patterns.

2.1 A Modeling Framework

Much extant research on count data has been focused on ex-
tending the basic Poisson model (denoted here as model [0])
to allow for hyperdispersion via a nonconstant hazard rate. The
basic ways in which hyperdispersion has been accounted for in-
clude (model [1]) adding covariates to the model, (model [2])
incorporating individual-level heterogeneity for the baseline
rates, and (model [3]) both [1] and [2]. In particular, if we let

[Xit|λi] ∼ Poisson(λi exp(Z′
itβ)), (1)

a proportional-hazards framework (Cox 1972), where Xit is
a nonnegative integer (count) for unit i = 1, . . . , I on its t =
1, . . . ,Tith observation, λi is the baseline rate for unit i, Zit =
(Zit1, . . . ,ZitP) is a vector of covariates that describe each in-
dividual, and β ′ = (β1, . . . , βP) is a vector of covariate slopes:
model [0] is obtained by setting λi = λ for all i and Z′

itβ = 0 (an
intercept only); model [1] is obtained by setting λi = λ for all i
(the Poisson regression model); model [2] is obtained by setting
P = 1, Zitβ = 0 and letting λi ∼ g(λi|θ) (when g is the gamma
distribution, then model [2] integrated over the distribution of
λi is the negative binomial distribution); and model [3] is as
given in (1) where again λi ∼ g(λi|θ). Model [3] is also some-
times referred to as the NegBin II model or a random-intercepts
Poisson regression model. Later in Section 4, we compare the
results of models [0]–[3] to those derived in this research.

What is of interest to note is that all of these extensions
use the Poisson model (with associated exponential interarrival
times) as their kernel. That is, these extensions to the model
have not been done at the core unit of analysis, that is, the un-
derlying arrival time distribution, but instead work strictly with
the count model. What we do in this research is to enhance the
flexibility of the arrival time model to account for richer pat-
terns. In particular, instead, we assume that the underlying ar-
rival time distribution for Yik, the kth arrival for unit i, follows
a Weibull distribution with density given by

f (Yik = y|λi, β, c) = λicyc−1 exp(−λiy
c). (2)

Later, when we introduce covariates into the model, we do it
through the hazard function:

h(t) = λctc−1, (3)

which is monotonically increasing for c > 1, monotonically de-
creasing for c < 1, and constant (and equal to λ) when c = 1.

Using the standard proportional-hazards framework, we then
boost this “baseline” hazard [given in (3)] by a weighted vec-
tor of the covariates h(t) = h0(t) exp(β ′Z), and then rely on the
well-known relationship between the hazard function and the
cdf:

F(t) = 1 − exp

(
−

∫
(h(u)du)

)

to arrive at the Weibull regression model

f (Yik = y|λi, β, c) = λi exp(Z′
itβ)cyc−1 exp

(−λi exp(Z′
itβ)yc).

(4)

We note that when c = 1, (4) simplifies to a heterogeneous
exponential arrival time model with covariates that leads to
count models [0]–[3] above.

Thus, directly analogous to models [0]–[3] which are based
on an exponential interarrival time, our interest lies in looking at
various reduced-form specifications of the model given in (4).
Specifically, we denote as model [4] the Weibull model without
heterogeneity and without covariates (model [0] analog) such
that λi = λ and Z′

itβ = 0. We label model [5] as the Weibull re-
gression model (without heterogeneity) such that λi = λ. Model
[6] is the model (to be discussed in Sec. 3.2) in which we allow
for heterogeneity in baseline rates λi but do not include covari-
ates (Z′

itβ = 0). Finally, model [7] is the fully parameterized
model that includes heterogeneity and covariates. All eight of
these models will be fit and results compared in Section 4.

It is important to note that whereas the baseline Weibull
model proposed here in (3) allows for increasing, constant, or
decreasing hazard, the individual-level hazard function is al-
ways monotonic. The way in which this restriction is addressed
here is via the inclusion of time-varying covariates, Zit, as in (4),
and with the gamma mixing distribution. These additions pro-
vide a great deal of flexibility to accommodate virtually any
kind of observable (i.e., aggregate) hazard function. Alterna-
tively, one can start with a nonmonotonic hazard function at
the individual level, for example, using a generalized Weibull
model (Mudholkar, Srivastava, and Kollia 1996). Whereas such
a distribution would provide even greater flexibility, we are cau-
tious about taking this step. When heterogeneity and/or covari-
ates are also included in the model, it becomes difficult to sort
out the various effects, and computational concerns arise as
well. Our experience suggests that there is already enough flex-
ibility with the proposed model, and further generalizations—
involving difficult trade-offs between modeling flexibility, pa-
rameter identification, and data requirements—should be ap-
proached with great care.

3. BASIC THEORY AND DEFINITIONS

Before discussing the Weibull count model itself, we de-
scribe the general framework utilized to derive the model that
is based upon the relationship between interarrival times and
their count model equivalent. Let Yn be the time from the mea-
surement origin at which the nth event occurs. Let X(t) denote
the number of events that have occurred up until time t. The re-
lationship between interarrival times and the number of events
is

Yn ≤ t ⇔ X(t) ≥ n.

We can restate this relationship by saying that the amount of
time at which the nth event occurred from the time origin is
less than or equal to t if and only if the number of events that
have occurred by time t is greater than or equal to n.
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We therefore have the following relationships that allow us
to derive our Weibull count model Cn(t):

Cn(t) = P(X(t) = n) = P(X(t) ≥ n) − P(X(t) ≥ n + 1)

= P(Yn ≤ t) − P(Yn+1 ≤ t). (5)

If we let the cumulative density function (cdf) of Yn be Fn(t),
then Cn(t) = P(X(t) = n) = Fn(t) − Fn+1(t). In the case where
the measurement time origin (and thus the counting process)
coincides with the occurrence of an event, then Fn(t) is simply
the n-fold convolution of the common interarrival time distribu-
tion which may or may not have a closed-form solution. Based
upon (5), we derive our Weibull count model next based upon a
polynomial expansion of F(t).

3.1 Weibull Count Model

We derive the basic Weibull count model, model [4] from ear-
lier, by assuming that the interarrival times are independent and
identically distributed Weibull with probability density func-
tion (pdf) f (t) = λctc−1e−λtc (c, λ ∈ R+), and corresponding
cdf F(t) = 1 − e−λtc , which simplifies to the exponential model
when c = 1.

The challenge in deriving the Weibull count model arises
in the need to be able to evaluate convolutions of the form∫ t

0 F(t − s)f (s)ds. Whereas this integral is easily solved for the
exponential density as well as the gamma with an integer-value
shape parameter (a.k.a. the Erlang distribution), it does not have
a proper solution for the Weibull. Thus, our approach is to han-
dle this integral (and derive the Weibull count model as a whole)
using a Taylor series expansion of the Weibull density.

In particular, the Taylor series approximations obtained by
expanding the exponential pieces (eλtc ), respectively, for both
the cdf and pdf of the Weibull are

F(t) =
∞∑

j=1

(−1)j+1(λtc)j

�(j + 1)
(6)

and

f (t) =
∞∑

j=1

(−1)j+1cjλjtcj−1

�(j + 1)
. (7)

Utilizing, as in (5), that Cn(t) = Fn(t) − Fn+1(t), we obtain
the following recursive relationship that we utilize in deriving
the Weibull count model:

Cn(t) =
∫ t

0
Fn−1(t − s)f (s)ds −

∫ t

0
Fn(t − s)f (s)ds

=
∫ t

0
Cn−1(t − s)f (s)ds. (8)

Before proceeding to develop the general solution to the
problem, we note that F0(t) is 1 for all t and F1(t) = F(t).
Therefore, we have C0(t) = F0(t) − F1(t) = e−λtc =∑∞

j=0 (−1)j(λtc)j/�(j + 1). Using the recursive formula in (8),
we can therefore compute C1(t):

C1(t) =
∫ t

0
C0(t − s)f (s)ds

=
∫ t

0

( ∞∑
j=0

(−1)j(λ(t − s)c)j

�(j + 1)

)

×
( ∞∑

k=1

(−1)k+1ckλksck−1

�(k + 1)

)
ds

=
∞∑

j=0

∞∑
k=1

(−1)j(−1)k+1(λ)j(λ)k

�(j + 1)�(k + 1)

∫ t

0
ck(t − s)cjsck−1 ds

=
∞∑

j=0

∞∑
k=1

(−1)j(−1)k+1(λ)j(λ)k

�(j + 1)�(k + 1)

× (t)cj(t)ck�(cj + 1)�(ck + 1)

�(cj + ck + 1)
. (9)

Then, by using a change of variables m = j and l = m + k, we
obtain

=
∞∑

l=1

(
l−1∑
m=0

(−1)m(−1)l−m+1(λ)m(λ)l−m

�(m + 1)�(l − m + 1)

× (t)cm(t)cl−cm�(cm + 1)�(cl − cm + 1)

�(cm + cl − cm + 1)

)

=
∞∑

l=1

(−1)l+1(λtc)l

�(cl + 1)

(
l−1∑
m=0

�(cm + 1)�(cl − cm + 1)

�(m + 1)�(l − m + 1)

)

=
∞∑

l=1

(−1)l+1(λtc)lαl
m

�(cl + 1)
,

where

αl
m =

l−1∑
m=0

�(cm + 1)�(cl − cm + 1)

�(m + 1)�(l − m + 1)
.

This suggests a general form for Cn(t), namely,∑∞
l=n

(−1)l+n(λtc)lαn
l

�(cl+1)
, which is confirmed by

Cn+1(t) =
∫ t

0
Cn(t − s)f (s)ds

=
∫ t

0

( ∞∑
j=n

(−1)j+n(λ(t − s)c)jαn
j

�(cj + 1)

)

×
( ∞∑

k=1

(−1)k+1ckλksck−1

�(k + 1)

)
ds

=
∞∑

j=n

∞∑
k=1

(−1)j+n(−1)k+1(λ)j(λ)kαi
j

�(cj + 1)�(k + 1)

×
∫ t

0
ck(t − s)cjsck−1 ds

=
∞∑

j=n

∞∑
k=1

(−1)j+n(−1)k+1(λ)j(λ)kαn
j

�(cj + 1)�(k + 1)

× (t)cj(t)ck�(cj + 1)�(ck + 1)

�(cj + ck + 1)
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=
∞∑

l=n+1

(−1)l+n+1(λtc)l

�(cl + 1)

(
l−1∑
m=n

αn
m

�(cl − cm + 1)

�(l − m + 1)

)

=
∞∑

l=n+1

(−1)l+1(λtc)lαn+1
l

�(cl + 1)
, (10)

where αn+1
l = ∑l−1

m=n αn
m�(cl − cm + 1)/�(l − m + 1).

Therefore, we have the main result of this article, the Weibull
count model:

P(N(t) = n) = Cn(t) =
∞∑

j=n

(−1)j+n(λtc)jαn
j

�(cj + 1)
,

n = 0,1,2, . . . , (11)

where α0
j = �(cj + 1)/�(j + 1), j = 0,1,2, . . . , and αn+1

j =∑j−1
m=n αn

m�(cj − cm + 1)/�(j − m + 1), for n = 0,1,2, . . . , for
j = n + 1,n + 2,n + 3, . . . .

We note in addition that the expectation of this count model
is

E(N) =
∞∑

n=1

∞∑
j=n

n(−1)j+n(λtc)jαn
j

�(cj + 1)
, (12)

with variance given by

Var(N) = E(N2) − (E(N))2 (13)

=
∞∑

n=2

∞∑
j=n

n2(−1)j+n(λtc)jαn
j

�(cj + 1)

−
( ∞∑

n=1

∞∑
j=n

n(−1)j+i(λtc)jαn
j

�(cj + 1)

)2

. (14)

In fact, the moment generating function (MGF) is also read-
ily obtained. In particular, let MI(u) denote the MGF where I is
the Weibull counting random variable in the pdf. Then,

MI(u) = E(eiu)

=
∞∑

i=0

eiu
∞∑
j=i

(−1)j+i(λtc)jαi
j

�(cj + 1)

=
∞∑

i=0

eiu
∞∑
j=i

(−1)j+i(λtc)jαi
j

�(cj + 1)

=
∞∑

i=0

∞∑
j=i

eiu(−1)j+i(λtc)jαi
j

�(cj + 1)
, (15)

and correspondingly, to obtain the moments we note that

dn

dun
MI(u) = dn

dun

∞∑
i=0

∞∑
j=i

eiu(−1)j+i(λtc)jαi
j

�(cj + 1)

=
∞∑

i=n

∞∑
j=i

ineiu(−1)j+i(λtc)jαi
j

�(cj + 1)
. (16)

Hence, based on our polynomial expansion, we obtain
closed-form expressions for the density as well as its moments.

3.2 The Benefits of the Weibull Count Model

We now revisit the properties listed in Section 1, point by
point (and provided in italics below), to describe both those as-
pects that the basic Weibull count model (without covariates
and without heterogeneity) given in (11) provides, and those
that require extensions.

(1) The model generalizes (nests) the most commonly used
extant models such as the Poisson and the NBD as
special cases; thus, when a simple structure is suffi-
cient, the researcher will clearly see it through the es-
timated model parameters. Furthermore, standard infer-
ential procedures (e.g., the likelihood ratio test) can be
used to compare different specifications.

We note that when we set c = 1 and t = 1 in (11), we
do in fact get the Poisson count model as P(N(t) = n) =∑∞

j=n (−1)j+n(λ)jαn
j /�(j + 1), a standard result. With regard

to the negative binomial model, we discuss this with respect to
item 5 below, when λ is allowed to vary across the population.

(2) The model handles both overdispersed and underdis-
persed data, both of which are likely to be seen in prac-
tice.

Through extensive simulations (because the result is unavail-
able in closed form), we have verified that for 0 < c < 1, the
probability mass function associated with the Weibull count
model displays overdispersion, whereas for c > 1, underdisper-
sion is displayed. That is, the underlying interarrival times have
a decreasing (increasing) hazard for 0 < c < 1 (c > 1). Thus,
negative duration dependence is associated with overdispersion,
positive duration dependence with underdispersion (Winkel-
mann 1995). A lack of duration dependence leads to the Poisson
distribution with equal mean and variance.

As one demonstration of these findings, Figures 1 and 2 dis-
play probability histograms for the Weibull and Poisson count
models with different parameter values. Both the Weibull and
the Poisson were intentionally chosen to have identical means

Figure 1. Poisson and Weibull models displaying underdispersion.
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Figure 2. Poisson and Weibull models displaying overdispersion.

(set to 2); yet their dispersion is quite different. In Figure 1, we
have the probability histograms for an underdispersed Weibull
with parameters c = 1.5 and λ = 2.93, and a Poisson with
λ = 2. The variance of the Weibull count model in this case
is .880. In Figure 2, we have the probability histograms for an
overdispersed Weibull with parameters c = .5 and λ = 1.39,
and again the Poisson with λ = 2. The variance of the Weibull
count model in this case is 3.40, which is greater than the mean,
as expected.

(3) Researchers who believe that the interarrival times of
their dataset are Weibull distributed now have a corre-
sponding counting model to use.

As (11) is derived from the Weibull timing model, the link
between the timing model and its counting model equivalent
is maintained. Hence, in those cases where an analysis of the
interarrival times (if the data are available) suggests that a more
flexible timing model is needed, it can now be incorporated via
its count model equivalent. Furthermore, in those cases where
one only has count data, but would like to make forecasts of
the next arrival time, this can now be done given the timing and
count model link that is now achieved.

(4) The model is computationally feasible to work with: it is
estimable without requiring a formal programming lan-
guage or time-consuming simulation-based methods.

Although the summations shown in the expressions above
may seem a bit daunting at first, they are easy to manage from
an operational standpoint. We will demonstrate in Section 4 that
the model is tractable enough that we perform parameter esti-
mation in standard software, and in addition that the results are
not particularly sensitive to the number of terms that are used in
the summation, beyond a certain point, which can be identified
through empirical testing.

(5) The model allows for the incorporation of person-level
heterogeneity reflecting the fact that individuals’ interar-
rival rates may vary quite substantially across the popu-
lation.

One nice feature of the model presented in (11) is that in-
troducing heterogeneity across units in their rate parameters,
λi, is straightforward. If, as is standard in many timing models,
we assume that the underlying rates are drawn from a gamma
distribution λi ∼ gamma(r, α), we can increase the model flex-
ibility at the expense of only one additional model parameter
and also, as per item 1, when c = 1 nest the negative bino-
mial model. Thus, when we combine our polynomial expansion
Weibull count model in (11) with a gamma mixing distribution,
we get a count model that nests the Poisson and negative bino-
mial.

In particular, the derivation of the heterogeneous Weibull
count model, model [6] from Section 2.1, is given as follows:

P(N(t) = n) =
∫ ∞

0

[ ∞∑
j=n

(−1)j+n(λitc)jαn
j

�(cj + 1)

]
g(λi|r, α)dλi

=
∫ ∞

0

[ ∞∑
j=n

(−1)j+n(λitc)jαn
j

�(cj + 1)

]

× αr(λi)
r−1e−αλi

�(r)
dλi

=
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j=n

(−1)j+n(tc)jαn
j

�(cj + 1)

∫ ∞

0
λ

j
i
αr(λi)

r−1e−αλi

�(r)
dλi

=
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j=n

(−1)j+n(tc)jαn
j

�(cj + 1)

�(r + j)

�(r)αj
. (17)

This expression is simply a weighted sum of the jth moments
of the gamma distribution around zero, �(r + j)/�(r)αj, as λ

j
i

enters the polynomial approximated likelihood in a linear way.
Hence, the conjugacy of the gamma mixing distribution and the
polynomial approximated likelihood is directly obtained.

(6) The mechanism required to incorporate covariate effects
is clear and simple. This process is consistent with stan-
dard “proportional-hazards” methods, which represent
the dominant paradigm for ordinary single-event timing
models.

Now that we have the closed-form solution for the hetero-
geneous count model with an underlying Weibull interarrival
process, we extend it to allow for the inclusion of covariates,
that is, models [5] and [7] from Section 2.1. We define the
Weibull regression model, without heterogeneity, as

P(N(t) = n) =
∞∑

j=n

(−1)j+n(λex′
iβ tc)jαn

j

�(cj + 1)

=
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j=n

(
(−1)j+n(λtc)jαn

j

�(cj + 1)

)
(ex′

iβ)j, (18)

where x′
i denotes the covariate vector for unit i and β a set of

covariate slopes. In an analogous manner, we derive model [7],
our most complex model which allows for Weibull interarrival
times, covariate heterogeneity, and parameter heterogeneity and
is given by

P(N(t) = n) =
∞∑

j=n

(−1)j+n(tc)jαn
j

�(cj + 1)

�(r + j)

�(r)αj
(ex′

iβ)j, (19)
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after integrating over λi ∼ gamma(r, α).
We next describe an application of these models using a

dataset initially described and analyzed by Winkelmann (1995)
that is an underdispersed count dataset with covariates.

4. TESTING AND RESULTS

Besides the derivation of the Weibull count model, and the
extensions to include covariates and heterogeneity, an addi-
tional goal of this research was to provide an empirical demon-
stration of our model. Is the polynomial expansion derived here
empirically tractable, and will it provide improved results com-
pared to existing methods? Remarkably enough, the computa-
tional approach for our class of models, including the computa-
tion of bootstrap standard errors (Efron 1982), was conducted
entirely in Microsoft Excel, an aspect we believe makes our ap-
proach widely accessible. The spreadsheet calculates the first
hundred α coefficients, and then uses Solver to maximize the
likelihood with respect to the data; it is available upon request.

Specifically, to compute the standard errors of coefficients
under the series of models, we utilized a bootstrap procedure
in which 100 replicate datasets of identical size to the origi-
nal data for each model were generated by sampling individ-
ual respondent covariate-count outcome pairs, (Zi,Ni), with re-
placement. The results reported for the standard errors are the
standard deviation of the coefficients across those samples. We
note that the bootstrapping procedure can be implemented using
a weighted likelihood approach where each observation pair’s
weight in the likelihood is the number of times that it appears
in the replicate sample. This equivalence of using a weighted
likelihood approach to compute bootstrap standard errors is not
specific to this model, so it can be utilized in a large number
of research domains, and can be applied in software packages
(e.g., a spreadsheet) that contain little more than random num-
ber generation and function maximizing capabilities. In addi-
tion, bootstrap standard errors were compared to standard er-
rors computed using numerical estimates of the gradient and
Hessian. The standard errors were of comparable magnitude in
all cases, contained no general pattern, and were roughly 20–
30% bigger on average using the bootstrap, reflecting the po-
tential asymmetric and heavier tailed models utilized here.

We apply our series of models to a dataset initially (and more
fully) described by Winkelmann (1995) which contains as a
dependent variable the number of children born to a random
sample of females. A number of explanatory variables, Zi, are
available including the female’s general education (measured

as the number of years of school), a series of dummy variables
for post-secondary education (either vocational training or uni-
versity), nationality (German or not), rural or urban dwelling,
religious denomination (Catholic, Protestant, and Muslim, with
other or none as reference group), and continuous variables for
year of birth and age at marriage.

This dataset was chosen for a number of reasons. First, the
article by Winkelmann (1995) acted as a motivation for this re-
search; hence utilizing the identical dataset made sense. Sec-
ond, for this dataset, the variance of the number of births is less
than the mean (2.3 versus 2.4); thus we have an opportunity to
demonstrate the ability of the Weibull family of count models to
handle underdispersion. Finally, as Winkelmann (1995) already
contained the results for the Poisson regression model (model
[1] here) and the gamma-based count model that he derived in
that article, we already had results that would both let us con-
firm the accuracy of our computational approach and provide a
strong benchmark (the gamma-based model) to which we can
compare the Weibull.

Before presenting the results, we note (as is standard in ex-
tant Weibull timing model research) that we reparameterized
our Weibull count model from its regular form (r, α, c) to a pa-
rameterization given by (1/r, r/α, c). This has been shown to
have (and we confirm here that there are) multiple benefits in
model implementation, including (1) greater stability in the pa-
rameter estimation process, (2) parameter estimates that are not
at the boundary of the parameter space (thus enabling likeli-
hood ratio tests for model comparison), and (3) standard errors
of coefficients that are more stable and meaningful than those
associated with the direct estimation of r, α, and c.

Tables 1 and 2 list the results of the basic models (without
covariates) and the regression models, respectively. We note
that the log-likelihood values computed using our count model
approach, for both the regular Poisson (LL = −2186.8) and
Poisson regression (LL = −2101.8), are identical to those in
table 1 of Winkelmann (1995, p. 471), thus verifying the ac-
curacy of our polynomial expansion approach. In addition, the
last column in Table 2, the results of the gamma count regres-
sion model, is taken directly from table 1 of Winkelmann (1995,
p. 471). We describe our findings with respect to the models first
without and then with covariates.

In Figure 3 we plot the actual and fitted values for the Pois-
son, the NBD, the Weibull, and the heterogeneous Weibull, not-
ing that, for this dataset, the Poisson and the NBD are indistin-
guishable. Whereas all of the models tend to underfit at two
children and overfit for values near two, a result also seen in

Table 1. Basic model results for total marital fertility

Model

Poisson NBD Weibull Het. Weibull

Variable Coef SE Coef SE Coef SE Coef SE

λ 2.380 .042 2.635 .099
c 1.116 .042 1.436 .053
1/r .000 .009 .200 .012
r/α 2.384 .047 3.625 .156
Log likelihood −2,186.8 −2,186.8 −2,180.4 −2,165.6
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Table 2. Regression model results for total marital fertility

Model

Poisson NBD Weibull Het. Weibull Gamma

Variable Coef SE Coef SE Coef SE Coef SE Coef SE

German −.200 .050 −.198 .040 −.229 .062 −.268 .054 −.190 .060
Years of schooling .033 .004 .034 .002 .038 .010 .062 .015 .032 .027
Vocational training −.153 .038 −.152 .033 −.173 .047 −.181 .040 −.144 .037
University −.155 .098 −.155 .087 −.179 .125 −.264 .076 −.146 .130
Catholic .218 .046 .218 .042 .244 .066 .242 .038 .206 .059
Protestant .113 .057 .113 .043 .125 .069 .118 .046 .107 .063
Muslim .548 .064 .551 .052 .640 .089 .673 .037 .523 .070
Rural .059 .031 .062 .027 .068 .038 .071 .042 .055 .032
Year of birth .002 .001 .003 .000 .002 .001 .003 .003 −.002 .002
Age at marriage −.030 .003 −.030 .000 −.030 .003 −.034 .006 −.290 .006
λ 3.150 .264 4.050 .331
c 1.236 .045 1.362 .061
1/r .000 .000 .061 .008
r/α 3.130 .131 3.604 .093 1.439 .233
Log likelihood −2,101.8 −2,101.8 −2,077.0 −2,067.5 −2,078.2

Winkelmann (1995) even when covariates were included, the
heterogeneous Weibull minimizes error and maximizes likeli-
hood. Given that the location of the error falls at the value
of two children, a number of children seen as ideal by many,
and this error seems consistent across models, we might con-
clude that contraceptive practices or cultural norms have “in-

Figure 3. Fertility data compared to fitted values.

terfered” with the underlying independence and identically dis-
tributed assumption. Moreover, we would expect the Weibull
models to perform best relative to the Poisson and the NBD on
datasets that are underdispersed, which it does. However, for
this dataset, the mean is 2.4 and the variance is 2.3, so the data
are only very slightly underdispersed, thus explaining the simi-
larity of the fitted values.

The basic models show that both Weibull count models have
significantly better log-likelihoods than the Poisson and the
NBD. The latter two models are identical for this dataset, be-
cause the observed underdispersion will drive the NBD hetero-
geneity to zero (the corresponding values of r and α obtained
from 1/r and r/α are extremely large). The presence of gamma
heterogeneity around the Poisson process would overdisperse,
not underdisperse, the fertility counts, so it would not help in
this case. Interestingly, once one utilizes the Weibull timing
model instead of the exponential, the need for heterogeneity
now arises (LL = −2165.5 for the heterogeneous Weibull as
compared to −2180.4 for the nonheterogeneous). In fact, we
hypothesize that because the Weibull model indicates duration
dependence (c significantly greater than 1), this needs to be
counterbalanced by heterogeneity to provide an adequate fit. It
is somewhat unusual to encounter a situation in which the move
to a more flexible individual-level model leads to a greater de-
gree of heterogeneity than a more restricted specification. Al-
though we observe this pattern for our data, we do not know if
it holds in general; it is an interesting area for future research.

The results in Table 1 provide initial evidence that duration
dependence plays a distinctly different role when compared to
heterogeneity. It is valuable to have a model that can distinguish
between these two factors. If the underlying dataset were in-
stead overdispersed, one could use the heterogeneous Weibull
count model to determine whether the “non-Poisson” disper-
sion effects were coming from the underlying timing process or
from cross-sectional differences. This can be a valuable contri-
bution of our model.

Notice finally that the value of c in the nonheterogeneous
Weibull model is 1.116, slightly more than two standard errors
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above 1.0, and for the heterogeneous model it is 1.436—almost
eight standard errors above 1.0. This is consistent with our ear-
lier discussion result that when c is greater than 1, the Weibull
count model’s variance is less than the mean—underdispersion.
It also indicates that the “arrival process” for babies is not com-
pletely random. A mother is unlikely to have a baby immedi-
ately after the birth of a previous child (which fits the laws of
nature quite well), but the odds (or hazard) of delivering another
child steadily increase thereafter. An anonymous reviewer sug-
gested that a Weibull model with a “blocked” period reflecting
that women cannot have children within a certain time frame
after birth would be a more realistic empirical model, and we
agree that this is an interesting area for future research.

Turning our attention to the models with covariates, we first
note that the two Weibull regression models provide the best
fits, that is, a slight improvement in log-likelihood for the
Weibull model without heterogeneity and a significant improve-
ment for the heterogeneous Weibull model, compared to the
Poisson and Winkelmann’s gamma count model. The values
of c for the Weibull regression and heterogeneous Weibull re-
gression models are comparable to the models with no covari-
ates, and still significantly greater than 1.0. The coefficients for
the covariates show very small differences across the models.
The coefficients of all variables are identical in sign to those
in Winkelmann (1995), are extremely stable across the class
of models, and have comparable standard errors such that the
variables that are significant coincide in both sets of models
(the only difference of note is that the year-of-birth and age-
of-marriage variables were centered in Winkelmann, and not
here, hence the difference in size of the coefficients; the Pois-
son regression models as indicated by the log-likelihoods are
the same).

5. CONCLUSIONS

In this research, we have derived and provided an empirical
demonstration for an entirely new class of count models de-
rived from a Weibull interarrival time process. The new model
has many nice features such as its closed-form nature, compu-
tational simplicity, the ability to nest both the Poisson and NBD
models, and the ability to bring in both heterogeneity and co-
variates in a natural way. The key to the derivation is the use of
a Taylor series expansion to get around the fact that, unlike the
exponential or gamma distributions, there is no simple way to
obtain a convolution of two (or more) Weibulls.

From an empirical standpoint, we showed that the Weibull
count model without heterogeneity offers a slight improvement
in log-likelihood when compared to the gamma count model
of Winkelmann (1995) and a dramatic improvement over ex-
tant models commonly used. When including heterogeneity in
the Weibull model (both with and without covariates), the im-
provement is even greater, suggesting that the improved ef-
fects of adding a flexible timing model and heterogeneity may
be complementary. Admittedly it is impossible to generalize
from one dataset, but these results provide encouraging signs
about the model’s validity and usefulness. More importantly,
the model provides a sizeable improvement over the more tradi-
tional Poisson/NBD model (with and without covariates). This
may have important implications in many cases, because most

researchers have always turned to heterogeneity as the first ex-
planation/correction for datasets that do not conform well to the
simple assumption of Poisson counts (and, implicitly, exponen-
tial interarrival times). Now researchers have a very plausible
second explanation available (i.e., Weibull interarrival times)
and they can further explore it using conventional techniques
such as proportional hazards for covariates and a parametric
mixing distribution for heterogeneity. This is a powerful com-
bination of old and new methods that has substantial promise
for a wide variety of application areas.
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