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Replication is an important contemporary issue in psy-
chological research, and several recent efforts have been 
devoted to assessing the replicability of one phenom-
enon or a small number of phenomena (Klein et al., 
2014; Klein et al., 2018; Simons, Holcombe, & Spellman, 
2014), as well as the domain as a whole (Open Science 
Collaboration, 2015). Unfortunately, these prospective 
replication efforts involve heroic levels of coordination, 
require tremendous resources, and are relatively slow. 
Consequently, there is great interest in alternative ways 
of assessing replicability, in particular, retrospectively 
via prior studies.

The average power of a set of prior studies is a quan-
tity that has attracted considerable attention for this 
purpose. Indeed, average power has been labeled a 
“replicability estimate” (Brunner & Schimmack, 2016; 
Schimmack & Brunner, 2017) and described as estimat-
ing the rate of replicability “if the same studies were run 
again” (Simmons & Simonsohn, 2017, p. 690). Further, 
techniques to estimate this quantity via a meta-analytic 

approach have recently been proposed (Brunner & 
Schimmack, 2016; Simonsohn, Nelson, & Simmons, 
2014).

In this article, we have two aims. First, we clarify the 
nature of average power and its implications for repli-
cability. We explain that average power is not relevant 
to the replicability of actual prospective replication 
studies. Instead, it relates to efforts in the history of 
science to catalogue the power of prior studies (Cohen, 
1962; Rossi, 1990; Sedlmeier & Gigerenzer, 1989).

Second, we evaluate the statistical properties of point 
estimates and interval estimates of average power 
obtained via the meta-analytic approach. We find that 
point estimates of average power are too variable and 
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inaccurate for use in application. We also find that the 
width of interval estimates of average power depends 
on the corresponding point estimates; consequently, 
the width of an interval estimate of average power can-
not serve as an independent measure of the precision 
of the point estimate.

As we discuss, our findings resolve a seeming puzzle 
posed by three estimates of the average power of the 
power-posing literature obtained via the meta-analytic 
approach. Specifically, the 95% interval estimates of 
average power reported by Cuddy, Schultz, and Fosse 
(2018) and Schimmack and Brunner (2017) are more 
than 3 times the width of the 95% interval estimate 
reported by Simmons and Simonsohn (2017)—despite 
the fact that the meta-analyses conducted by Cuddy 
et al. and Schimmack and Brunner included all 33 stud-
ies included in the meta-analysis of Simmons and 
Simonsohn, as well as 20 additional ones. When con-
sidered alongside the results reported by Cuddy et al. 
and Schimmack and Brunner, our findings strongly sug-
gest that the interval estimate reported by Simmons and 
Simonsohn and obtained via the so-called p-curve meta-
analytic model is optimistically narrow if taken as a 
measure of precision.

Disclosures

Code for our analyses is available both as Supplemental 
Material (http://journals.sagepub.com/doi/suppl/10 
.1177/2515245920902370) and at the Open Science 
Framework (https://osf.io/3gyu7/).

Average Power and Replicability

The power of a study is, by definition, the probability 
that the study yields results that are statistically significant 
in the classical frequentist repeated sampling framework. 
Put differently but equivalently, the power of a study is 
the long-run frequency that the study yields results that 
are statistically significant if the study could be repeated 
infinitely many times such that the only difference among 
the repetitions is the sampling error realized.

Similarly, the average power of a set of prior studies 
is, by definition, the average (i.e., arithmetic mean) of 
the power of each study in the set. Consequently, aver-
age power gives the fraction of the prior studies that in 
expectation yield—or, equivalently, the probability that 
one prior study chosen randomly and uniformly from 
the set yields—results that are statistically significant in 
the classical frequentist repeated sampling framework.

Perhaps because of this, it has been claimed that 
average power is relevant to the replicability of actual 
prospective replication studies (Brunner & Schimmack, 
2016; Schimmack & Brunner, 2017; Simmons & 
Simonsohn, 2017). However, for at least three reasons, 

it is not. First, even were direct or exact replication 
possible in psychological research such that the classi-
cal frequentist repeated sampling framework might 
apply, average power is wed to prior study design 
choices, including sample sizes, whereas actual pro-
spective replication studies are not (see, e.g., Open 
Science Collaboration, 2015, which employed larger 
sample sizes than prior studies so as to increase power).

Second, it has long been argued that direct or exact 
replication is not possible in psychological research 
(Brandt et al., 2014; Fabrigar & Wegener, 2016; Rosenthal, 
1991; Stroebe & Strack, 2014); instead, effect sizes vary 
from one study of a given phenomenon to the next 
such that the classical frequentist repeated sampling 
framework does not apply. Recent empirical evidence 
strongly supports this view, documenting that hetero-
geneity is rife across both general (i.e., systematic or 
conceptual) replications (Stanley, Carter, & Doucouliagos, 
2018; van Erp, Verhagen, Grasman, & Wagenmakers, 
2017) and close replications (i.e., studies that use identi-
cal or very similar materials; McShane, Tackett, Böckenholt, 
& Gelman, 2019).

Third, the success or failure of replication need not 
be defined in terms of statistical significance. Indeed, 
the null hypothesis significance testing paradigm upon 
which the notion of statistical significance is based has 
been the subject of no small amount of criticism (see, 
e.g., Amrhein, Greenland, & McShane, 2019; Boring, 
1919; McShane, Gal, Gelman, Robert, & Tackett, 2019; 
Rozenboom, 1960), and alternative definitions involv-
ing, for example, the convergence or divergence of 
results across multiple studies of a given phenomenon 
can be employed (see, e.g., Open Science Collabora-
tion, 2015, which employed five distinct definitions).

In sum, average power is relevant to replicability if 
and only if replication is defined in terms of statistical 
significance within the classical frequentist repeated 
sampling framework. As this framework is both purely 
hypothetical and ontologically impossible, average power 
is not relevant to the replicability of actual prospective 
replication studies. It is thus misleading, if not incorrect, 
to label average power a “replicability estimate” (Brunner 
& Schimmack, 2016; Schimmack & Brunner, 2017) and 
to describe it as estimating the rate of replicability “if the 
same studies were run again” (Simmons & Simonsohn, 
2017, p. 690) without this explicit qualification. Instead, 
average power relates to efforts in the history of science 
to catalogue the power of prior studies.

Estimating Average Power

The meta-analytic approach

Because the power of any study is never known, the 
average power of a set of prior studies is also never 
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known. Instead, it must be estimated. A natural approach 
to estimating average power is to estimate the power of 
each study in the set and then to average these esti-
mates. This requires an estimate of the effect size and 
an estimate of the sampling variance of each prior study.

Meta-analysis also requires an estimate of the effect 
size and the sampling variance of each prior study. It 
combines these across the studies to produce, among 
other things, a revised estimate of the effect size of each 
prior study that reflects the entire set of studies.

In the meta-analytic approach to estimating average 
power, the revised estimate of the effect size of each 
prior study is used in conjunction with the estimate of 
the sampling variance of the study to estimate the 
power of the study; then, these estimates of the power 
of each prior study are averaged to estimate average 
power. Insofar as the revised estimates of the effect size 
of each prior study constitute an improvement over the 
original ones, so too should the resulting estimates of 
the power of each study and of average power. Further, 
insofar as heterogeneous effect sizes, study-level mod-
erators, publication bias, and other factors are deemed 
relevant, various meta-analytic techniques that attempt 
to account for these factors can be employed; the use 
of such techniques will be reflected in the revised esti-
mate of the effect size of each prior study and thus also 
in the resulting estimates of the power of each study 
and of average power, yielding further improvement.

Given this, the meta-analytic approach to estimating 
average power can be seen as a multistudy analogue 
of the much-derided post hoc approach to estimating 
single-study power (Hoenig & Heisey, 2001; Yuan & 
Maxwell, 2005), which uses the effect size and the sam-
pling variance observed in a study to estimate the 
power of the study. However, (a) by using the revised 
estimate of the effect size of each prior study (which 
reflects the entire set of studies and potentially also 
heterogeneous effect sizes, study-level moderators, 
publication bias, and other factors), rather than the 
effect size observed in the prior study, to estimate 
the power of the prior study and (b) by considering 
the average power of a set of studies, rather than the 
power of a single study, the meta-analytic approach at 
least has the potential to overcome some of the limita-
tions of the post hoc approach—even though both are 
retrospective in nature.

In the remainder of this section, we evaluate the 
statistical properties of point estimates and interval esti-
mates of average power obtained via the meta-analytic 
approach. Before proceeding, we note that because the 
direction of the effect of interest is often specified in 
psychological research, we focus on statistical signifi-
cance (and thus power) as determined by a one-tailed 
test unless otherwise noted. We set size α of the test 

such that study results are deemed statistically signifi-
cant if they have a one-tailed p value less than .025 (or, 
equivalently, if they are directionally consistent with 
the true effect and have a two-tailed p value less than 
.05). We note that one-tailed power and two-tailed 
power are virtually equal for the corresponding αs 
except in extreme cases when one-tailed and two-tailed 
power are very low or α is very high. We also note that 
two-tailed power is simply the sum of the one-tailed 
powers in the two directions. Thus, our results apply 
broadly to two-tailed power as well.

Point estimates of average power

Scenario 1. The most important consideration in point 
estimation is accuracy. Consequently, we begin by evalu-
ating the accuracy of point estimates of average power 
obtained via the meta-analytic approach in the statisti-
cally most ideal scenario possible. We do so not because 
we view this scenario as realistic, but rather to establish 
a bound on the level of accuracy that one can expect to 
obtain. Specifically, because ideal scenarios yield opti-
mistic assessments of accuracy, point estimates will be 
less accurate in more realistic scenarios. Consequently, if 
accurate point estimates cannot be obtained in this sce-
nario, they cannot be obtained in more realistic scenarios 
and thus in application.

Given a statistical model for the observed data and 
an estimator of some quantity based on the observed 
data, the accuracy of point estimates of the quantity 
can be assessed via the sampling distribution of the 
estimates obtained from the estimator (i.e., the distribu-
tion of the estimates across repeated samples of the 
observed data). Specifically, if this distribution is both 
narrow and centered near the true value of the quantity 
regardless of the true value (i.e., if the estimator is both 
low in variance and low in bias, respectively), one will 
tend to obtain accurate point estimates; alternatively, if 
this distribution is wide or centered far away from the 
true value of the quantity (i.e., if the estimator is high 
in variance or high in bias, respectively), one will tend 
to obtain inaccurate point estimates.

Given this, suppose that one is interested in estimat-
ing the average power of a set of independent studies 
that all follow a two-condition between-subjects design, 
that the effect of interest is the difference between the 
means of the two conditions, that this difference is 
common across studies, that the individual-level obser-
vations are normally distributed with these respective 
means and known variance (which we assume without 
loss of generality is equal to 1 such that the effect size 
is on the standardized Cohen’s d scale), and that the 
sample size per condition is equal within each study 
and across studies. Further, suppose that one estimates 
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the meta-analytic model using the maximum likelihood 
estimator for the correctly specified statistical model for 
the observed data; that is, individual study effect-size 
estimates (and test statistics) are modeled as indepen-
dently distributed according to a normal distribution 
with common effect size and known variance—the clas-
sic one-parameter so-called fixed-effects meta-analytic 
model.

This scenario is statistically the most ideal one pos-
sible for meta-analysis—and thus for the meta-analytic 
approach to estimating average power—for several rea-
sons. First, the meta-analytic model is correctly speci-
fied. Second, the meta-analytic model is as simple as 
possible, consisting of an extremely straightforward and 
well-behaved distribution (i.e., independent normal 
with common effect size and known variance) and 
requiring only a single model parameter to be esti-
mated. Third, the meta-analytic model is estimated via 
the maximum likelihood estimation strategy, which pos-
sesses several optimality properties. Fourth, the sam-
pling variance of each study is known. In fact, this 
scenario is so ideal that the sampling distribution of the 
point estimate of average power can be derived analyti-
cally (see the appendix for details).

We present the sampling distribution of the point 
estimate of average power, both analytically, based on 
Equation 4 in the appendix, and numerically, based on 
10,000 samples, when the number of studies included 

in the meta-analysis is set to 30, the effect size is set to 
0.5, and the sample size per condition in each study is 
set to achieve a target level of power of .5 (which 
requires a sample size of 31 subjects per condition in 
each study and which yields a realized level of power 
of .503 in each study and thus an average power of 
.503) in the left panel of Figure 1. The figure shows 
that the sampling distribution of the point estimate is 
centered around the true value of .503 but has nontrivial 
width; that is, the estimates are highly variable and thus 
not particularly accurate. For example, the 2.5% and 
97.5% quantiles of the sampling distribution are .363 
and .643, respectively. In other words, one is reasonably 
likely to obtain a point estimate of average power as 
low as .363 or as high as .643 when the true value is 
.503 even when one includes 30 studies—with a total 
sample size of 1,860 (30 studies × 31 subjects per condi-
tion × 2 conditions) subjects—in the meta-analysis. 
(Note: The median number of studies included in meta-
analyses in psychological research is 12, and only 26% 
include more than 30 studies; van Erp et al., 2017.)

To assess whether these results are idiosyncratic to 
the number of studies, effect size, or target level of 
power employed, we varied the number of studies from 
10 to 100 in increments of 10 and both the effect size 
and target level of power from 0.1 to 0.9 in increments 
of 0.1. The sample size per condition in each study 
required by each combination of effect size and target 
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Fig. 1. Sampling distribution of the point estimate of average power. The sampling distribution is evaluated analytically (density 
curve) and numerically, based on 10,000 samples (histogram). The sampling distributions are centered around the true value of 
.503 but have nontrivial width; that is, point estimates of average power are highly variable and thus not particularly accurate.
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level of power and the realized level of power yielded 
by that sample size are provided for reference in Tables 
1 and 2, respectively.

Because it would be prohibitive to present the result-
ing 810 (10 numbers of studies × 9 effect sizes × 9 target 
levels of power) sampling distributions via histograms, 
we summarize each distribution by a single number that 
describes its variability, in particular, the difference 
between the 97.5% and 2.5% quantiles, which we term 
the 95% sampling distribution width.1 For example, the 
95% sampling distribution width of the distribution pre-
sented in the left panel of Figure 1 is .280 (.643 – .363).

We present 95% sampling distribution widths via 
solid lines in Figure 2; for simplicity, we present them 

for only three effect sizes and three target levels of 
power. As shown, the effect size has no impact on the 
sampling distribution width; this is a direct conse-
quence of the fact that the sample size per condition 
was set to achieve the target level of power. Further, 
the sampling distribution width is smallest when aver-
age power is low or high and largest when it is moder-
ate; this occurs because power is bounded between 0 
and 1, and, thus, when it is low or high, the sampling 
distribution runs up against the bound.

The figure can be used to assess the degree of vari-
ability one must be prepared to face when one has a 
given number of studies available for estimating aver-
age power. For example, if 30 studies are available, the 

Table 1. Sample Size per Condition

Effect 
size

Target level of power

.1 .2 .3 .4 .5 .6 .7 .8 .9

0.1 93 251 413 583 769 980 1,235 1,570 2,102
0.2 24 63 104 146 193 245 309 393 526
0.3 11 28 46 65 86 109 138 175 234
0.4 6 16 26 37 49 62 78 99 132
0.5 4 11 17 24 31 40 50 63 85
0.6 3 7 12 17 22 28 35 44 59
0.7 2 6 9 12 16 20 26 33 43
0.8 2 4 7 10 13 16 20 25 33
0.9 2 4 6 8 10 13 16 20 26

Note: The sample size per condition in each study is set to achieve a target level of power 
as given by the standard equation, n = 2(Z1–α – Zβ)

2/δ2, where Zγ denotes the γ quantile of the 
standard normal distribution; α denotes the size of the test and, as discussed in the main text, 
is set to .025 such that Z1–α = 1.960; 1 – β denotes the target level of power; and δ denotes the 
effect size on the standardized Cohen’s d scale. For example, when the target level of power is 
.8, such that Zβ = –0.842, this equation reduces to n = 15.698/δ2. Because the sample size per 
condition must be an integer, the value obtained from the equation must be rounded. Further, it 
must be rounded up so as to achieve the target level of power. Consequently, the realized level 
of power (see Table 2) is greater than the target level of power. For example, when the effect 
size is 0.5 and the target level of power is .8, the equation gives n = 15.698/0.52 = 62.791; hence, 
the sample size per condition is 63, and the realized level of power is .801.

Table 2. Realized Level of Power

Effect 
size

Target level of power

.1 .2 .3 .4 .5 .6 .7 .8 .9

0.1 .101 .201 .301 .400 .500 .600 .700 .800 .900
0.2 .103 .201 .302 .401 .502 .600 .701 .801 .900
0.3 .104 .201 .301 .401 .503 .601 .703 .801 .901
0.4 .103 .204 .302 .405 .508 .605 .705 .804 .901
0.5 .105 .216 .308 .410 .503 .609 .705 .801 .903
0.6 .110 .201 .312 .417 .512 .612 .709 .804 .903
0.7 .104 .227 .317 .403 .508 .600 .714 .812 .901
0.8 .123 .204 .322 .432 .532 .619 .716 .807 .901
0.9 .145 .246 .344 .436 .521 .631 .721 .812 .901

Note: See the note to Table 1.
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95% sampling distribution width is about .2 when aver-
age power is .2, just under .3 when average power is 
.5, and about .2 when average power is .8. Because the 
true value of average power is never known, the degree 
of variability one must be prepared to face is the maxi-
mum 95% sampling distribution width over all values. 
We present these maximum values in the first row of 
Table 3. The table shows, for example, that one must 
be prepared to face a 95% sampling distribution width 
of .283 when 30 studies are available for estimating 
average power.

Although what constitutes a tolerable degree of vari-
ability varies by context, we view a 95% sampling dis-
tribution width of .2 as the worst tolerable for estimating 
average power. As shown in the first row of Table 3, 
more than 60 studies are required to avoid exceeding 
this worst tolerable degree of variability in this scenario. 
Given that only 13% of meta-analyses in psychological 
research include more than 60 studies (van Erp et al., 
2017) and that point estimates of average power will 
be more variable and thus less accurate in more realistic 
scenarios, we can conclude that point estimates of aver-
age power are too variable and inaccurate for use in 
application.

Before proceeding, we note that various criticisms of 
the post hoc approach to estimating single-study power 
notwithstanding, these results provide yet another—and 
a probative—one. Specifically, the estimator of the effect 
size used by the post hoc approach to estimate the 
power of a study is identical to the one used here when 
only a single study is available, and, further, this estima-
tor is correctly specified. Consequently, the first row of 
Table 3 can be used to infer that point estimates of 
power obtained by the post hoc approach are extremely 
variable and thus extremely inaccurate; indeed, although 
not shown in the table, the maximum 95% sampling 
distribution width when only a single study is available 
is .950 in this scenario (because when the true value of 
power is .5 and only a single study is available, the 
sampling distribution of the point estimate of power is 
the uniform distribution on the unit interval).

Scenario 2. Given the results presented above, one might 
argue that there is no need to consider additional scenarios 
because if accurate point estimates cannot be obtained in 
that ideal scenario, they cannot be obtained in more realis-
tic scenarios. Although this argument is clearly valid, recent 
techniques to estimate average power via the meta-analytic 
approach (Brunner & Schimmack, 2016; Simonsohn et al., 
2014) motivated us to consider one additional scenario.

Specifically, these techniques attempt to estimate aver-
age power in a manner that attempts to address publica-
tion bias—the fact that studies with results that are 
statistically significant are overrepresented in the pub-
lished literature relative to those with results that are not. 
They attempt to do so by estimating the meta-analytic 
model based only on studies with results that are statisti-
cally significant in a manner that accounts for this selec-
tion.2 Consequently, we believe it worthwhile to evaluate 
point estimates of average power based only on studies 
with results that are statistically significant so as to deter-
mine just how much variability increases and thus accu-
racy decreases relative to the prior scenario.

Thus, we now evaluate point estimates of average 
power in a scenario that is statistically the most ideal 
one possible when such estimates are based only on 
studies with results that are statistically significant. Spe-
cifically, this scenario is identical to the prior scenario 
except in one regard, namely, that the meta-analytic 
model is estimated based only on studies with results 
that are statistically significant in a manner that accounts 
for this selection.

This scenario is statistically the most ideal one possible 
for meta-analysis—and thus for the meta-analytic 
approach to estimating average power—based only on 
studies with results that are statistically significant for 
several reasons. First, the meta-analytic model is correctly 
specified; that is, individual study effect-size estimates 
(and test statistics) are modeled as independently distrib-
uted according to a truncated normal distribution with 
common effect size and known variance—a one-tailed 
normal variant of the classic one-parameter Hedges 
(1984) selection model that accounts for the selection to 

Table 3. Maximum 95% Sampling Distribution Width

Scenario

Number of studies

10 20 30 40 50 60 70 80 90 100

Scenario 1 .470 .343 .283 .245 .220 .202 .187 .176 .166 .158
Scenario 2 .732 .562 .473 .416 .373 .343 .321 .301 .286 .268

Note: The table gives the degree of variability one must be prepared to face when one has a given number 
of studies available for estimating average power in a given scenario. For example, one must be prepared to 
face a 95% sampling distribution width of .283 in Scenario 1 and .473 in Scenario 2 when one has 30 studies 
available. Point estimates of average power are highly variable and thus not particularly accurate.
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only studies with results that are statistically significant. 
Second, the meta-analytic model is as simple as possible 
given the selection to only studies with results that are 
statistically significant and requires only a single model 
parameter to be estimated. Third, the meta-analytic model 
is estimated via the maximum likelihood estimation strat-
egy, which possesses several optimality properties. 
Fourth, the sampling variance of each study is known.

We present the sampling distribution of the point esti-
mate of average power numerically based on 10,000 
samples when the number of studies (all with results that 
are statistically significant) included in the meta-analysis 
is set to 30, the effect size is set to 0.5, and power is set 
to .503 in the right panel of Figure 1. The figure shows 
that the sampling distribution of the point estimate is again 
centered around the true value of .503 but has nontrivial 
width; that is, the estimates are highly variable and thus 
not particularly accurate. For example, the 2.5% and 
97.5% quantiles of the sampling distribution are .244 and 
.703, respectively. In other words, one is reasonably likely 
to obtain a point estimate of average power as low as 
.244 or as high as .703 when the true value is .503 even 
when one includes 30 studies with results that are statisti-
cally significant in the meta-analysis.

The figure shows that the distribution corresponding 
to this scenario is—as expected—substantially wider 
than the distribution corresponding to the prior scenario, 
even though estimates in the two scenarios are based 
on the same number of studies (i.e., 30 studies with 
results that are statistically significant in this scenario vs. 
30 studies regardless of results in the prior scenario). For 
example, the 2.5% and 97.5% quantiles of the sampling 
distribution widen from .363 and .643, respectively, in 
the prior scenario to .244 and .703, respectively, in this 
scenario; put differently, the 95% sampling distribution 
width increases from .280 to .458. In sum, point estimates 
of average power are much more variable and thus much 
less accurate when based only on studies with results 
that are statistically significant.

We now consider all 810 cases considered in the 
prior scenario. We present 95% sampling distribution 
widths via dashed lines in Figure 2; for simplicity, we 
again present them for only three effect sizes and three 
target levels of power in the figure. As shown, the effect 
size again has no impact on the sampling distribution 
width; this is a direct consequence of the fact that the 
sample size per condition was set to achieve the target 
level of power. Further, the sampling distribution width 
is again smallest when average power is low or high 
and largest when it is moderate; this occurs because 
power is bounded between 0 and 1, and, thus, when 
it is low or high, the sampling distribution runs up 
against the bound. Finally, the sampling distribution 
width in this scenario is substantially larger than the 

corresponding one in the prior scenario even though 
the estimates in the two scenarios are based on the 
same number of studies; that is, point estimates of aver-
age power are much more variable and thus much less 
accurate when based only on studies with results that 
are statistically significant. However, the difference 
between the two scenarios decreases as average power 
increases; this occurs because as average power 
increases, publication bias decreases and thus this sce-
nario converges to the prior scenario.

The figure can be used to assess the degree of vari-
ability one must be prepared to face when one has a 
given number of studies with results that are statistically 
significant available for estimating average power (i.e., 
the maximum 95% sampling distribution width). We pres-
ent these maximum values in the second row of Table 3. 
The table shows, for example, that one must be prepared 
to face a 95% sampling distribution width of .473 when 
30 studies with results that are statistically significant are 
available for estimating average power. Further, it is, for 
all intents and purposes, not possible to avoid exceeding 
the worst tolerable degree of variability (i.e., .2) when 
estimating average power based only on studies with 
results that are statistically significant. Given that point 
estimates of average power based only on studies with 
results that are statistically significant will be more vari-
able and thus less accurate in more realistic scenarios, 
we conclude that such estimates—featured by recent 
techniques (Brunner & Schimmack, 2016; Simonsohn 
et al., 2014)—are extremely variable and inaccurate. We 
therefore reiterate our conclusion that point estimates of 
average power are too variable and inaccurate for use in 
application.

Interval estimates of average power

In this subsection, we evaluate interval estimates of 
average power in the context of Scenarios 1 and 2. 
Under one-parameter meta-analytic models like those 
considered in the two scenarios, estimating a confi-
dence interval for average power is trivial because there 
is a one-to-one monotonic relationship between the 
parameter of the meta-analytic model and average 
power. Consequently, one can simply (a) estimate the 
usual confidence interval for the parameter of the meta-
analytic model and (b) use the bounds of that confidence 
interval to estimate a confidence interval for average 
power.3

In the context of Scenarios 1 and 2, interval estimates 
of average power have two desirable properties. First, they 
are valid; that is, nominal (1 – α) × 100% interval esti-
mates cover the true value of average power (1 – α) × 
100% of the time. Second, the expected width of 
nominal (1 – α) × 100% interval estimates matches the 
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corresponding (1 – α) × 100% sampling distribution 
width; among other things, this means that if we had 
plotted the expected width of the 95% interval estimates 
in Figure 2 rather than the 95% sampling distribution 
width, the figure would look identical.

However, interval estimates of average power have 
one very undesirable property: The width of such inter-
val estimates depends on the corresponding point esti-
mates. To illustrate this, we have plotted the width of 
the 95% interval estimate of average power against the 
corresponding point estimate when the number of stud-
ies included in the meta-analysis is set to 30 in Figure 
3; we note that the relationship between these two 
quantities depends on neither the effect size nor the 
target level of power. The figure shows a strong inverse 
U-shaped relationship between the two quantities. Spe-
cifically, low and high point estimates of average power 
are accompanied by narrow interval estimates of aver-
age power, whereas moderate point estimates are 
accompanied by wide interval estimates—regardless of 
the true value of average power.

In Scenario 1, this inverse U-shaped relationship 
holds because of the S-shaped relationship between 
effect size and power. Specifically, although the width 
of the interval estimate of the meta-analytic effect-size 
parameter does not depend on the corresponding 
point estimate of the meta-analytic effect-size param-
eter in this scenario, this S-shaped relationship causes 
the width of the interval estimate of average power to 
depend on the corresponding point estimate of aver-
age power. In Scenario 2, this inverse U-shaped rela-
tionship is exacerbated because in this scenario, the 
width of the interval estimate of the meta-analytic 
effect-size parameter also depends on the correspond-
ing point estimate of the meta-analytic effect-size 
parameter.

This inverse U-shaped relationship is particularly prob-
lematic because point estimates of average power are 
highly variable. Specifically, although point estimates of 
average power can in theory span the entire unit interval, 
they would in practice span a very narrow subset of it 
were they highly stable; consequently, the inverse 
U-shaped relationship would not be made manifest all 
that much. However, point estimates of average power 
are instead highly variable and thus in practice span a 
relatively wide subset of the unit interval; consequently, 
the inverse U-shaped relationship is made manifest.

The implication of this is that the width of an interval 
estimate of average power cannot serve as an indepen-
dent measure of the precision of the point estimate. In 
particular, a narrow interval estimate of average power 
accompanied by a relatively low or high point estimate 
of average power does not necessarily indicate a pre-
cise point estimate; instead, it reflects the low or high 

point estimate irrespective of the true value of average 
power.

For example, suppose that one estimates a meta-
analytic model based on 30 studies with results that are 
statistically significant, as in Scenario 2, and obtains a 
point estimate of average power of .1. In this case, the 
width of the interval estimate of average power will be 
about .3 (see Fig. 3). However, because point estimates 
of average power are highly variable, the true value of 
average power might actually be, say, .3, and had aver-
age power been estimated at this true value, one would 
have obtained an interval estimate of average power 
with width of about .45 (see Fig. 3). In other words, 
the relative narrowness of the interval estimate reflects 
not precision but simply the low point estimate of .1.

Additional scenarios

In the appendix, we further investigate estimates of 
average power obtained via the meta-analytic approach 
by means of an analytic treatment that generalizes the 
two scenarios along three lines, namely, to allow

(a) The sampling variance of each study to be treated 
as unknown (such that individual study test statistics 
are independently distributed according to a 
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Fig. 3. Width of the 95% interval estimate of average power versus 
the corresponding point estimate. The width of interval estimates of 
average power depends on the corresponding point estimates. Con-
sequently, the width of an interval estimate of average power cannot 
serve as an independent measure of the precision of the point estimate.
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noncentral t distribution with common effect size) 
rather than as known (such that individual study test 
statistics are independently distributed according to 
a normal distribution with common effect size and 
known variance), as in Scenarios 1 and 2.

(b) The likelihood that studies with results that are 
not statistically significant relative to those with 
results that are statistically significant are included 
in the meta-analysis to vary, rather than to be fixed 
at 1, as in Scenario 1, or 0, as in Scenario 2.

(c) This relative likelihood to be treated as unknown 
(in which case it is estimated), rather than as known, 
as in Scenarios 1 and 2.

In any case, the meta-analytic model is estimated using 
the maximum likelihood estimator for the correctly 
specified statistical model for the observed data—a one-
tailed normal (or noncentral t, as appropriate) variant 
of the classic Iyengar and Greenhouse (1988) selection 
model.

Readers interested in exploring Scenarios 1 and 2, 
as well as these more general scenarios, can do so at 
a website available at https://blakemcshane.shinyapps 
.io/averagepower.

Application to Power Posing

As noted in our introduction, three estimates of the 
average power of the power-posing literature have been 
obtained via the meta-analytic approach4:

(a) Simmons and Simonsohn (2017) estimated aver-
age power at .05, 95% confidence interval = [.05, .18], 
based on a meta-analysis of 33 studies employing the 
so-called p-curve meta-analytic model (Simonsohn 
et al., 2014), and concluded that “if the same studies 
were run again, it is unlikely that more than [18%] of 
them would replicate, and our best guess is that 5% 
of them would be [statistically] significant” (p. 690).

(b) Cuddy et al. (2018) estimated average power at 
.44, 95% confidence interval = [.20, .66] based on a 
meta-analysis of the 33 studies included in the meta-
analysis of Simmons and Simonsohn (2017) as well as 
20 additional ones also employing the so-called p-curve 
meta-analytic model, and concluded that the power-
posing literature “possesses evidential value” (p. 660).

(c) Schimmack and Brunner (2017) estimated aver-
age power at .29, 95% confidence interval = [.11, .53], 
based on a meta-analysis of the same 53 studies 
included in the meta-analysis of Cuddy et al. (2018) 
employing the so-called z-curve meta-analytic model 
(Brunner & Schimmack, 2016), and concluded that 
“at best, we can say that some power posing studies 

had effects . . . but we do not know how many stud-
ies are replicable” (p. 21).

All three sets of authors estimated average power in a 
manner that attempts to address publication bias, by 
estimating the meta-analytic model based only on stud-
ies with results that are statistically significant in a man-
ner that accounts for this selection, as in Scenario 2.

In this section, we consider these three estimates in 
light of our findings. We found that point estimates of 
average power are highly variable, especially when the 
meta-analytic model is based only on studies with 
results that are statistically significant, as here (see the 
right panel of Fig. 1, the dashed lines in Fig. 2, and the 
second row of Table 3). This finding is reflected in the 
large variation in these three point estimates—.05, .44, 
and .29, respectively.

We also found (a) that the width of interval estimates 
of average power depends on the corresponding point 
estimates, being narrow for relatively low or high point 
estimates and wide for moderate point estimates, and 
(b) that this dependence is exacerbated when the meta-
analytic model is based only on studies with results that 
are statistically significant, as here (see the dashed 
curve in Fig. 3). This finding resolves a seeming puzzle 
posed by these three interval estimates. Specifically, the 
95% interval estimates of average power reported by 
Cuddy et al. (2018) and Schimmack and Brunner (2017) 
are more than 3 times the width of the 95% interval 
estimate reported by Simmons and Simonsohn (2017)—
widths of .46 and .42, respectively, versus a width of 
.13—despite the fact that the meta-analyses conducted 
by Cuddy et al. and Schimmack and Brunner included 
all 33 studies included in the meta-analysis of Simmons 
and Simonsohn as well as 20 additional ones.

This comparison suggests the need for a reappraisal 
of the low point and narrow interval estimates reported 
by Simmons and Simonsohn (2017). On the one hand, 
the point estimate could correctly reflect a low true value 
of average power. On the other hand, point estimates of 
average power—particularly those based only on 33 
studies with results that are statistically significant—are 
highly variable. Consequently, it is also possible that the 
low point estimate—and the narrow interval estimate 
that necessarily accompanies it—could be obtained were 
the true value of average power considerably higher, for 
example, .44 or .29, as estimated by Cuddy et al. (2018) 
and Schimmack and Brunner (2017), respectively. Fur-
ther, had Simmons and Simonsohn obtained a point esti-
mate near such a value, they also would have obtained 
a considerably wider interval estimate. Indeed, being 
based on many fewer studies, their interval would have 
been even wider than those reported by Cuddy et al. 
and Schimmack and Brunner.

https://blakemcshane.shinyapps.io/averagepower
https://blakemcshane.shinyapps.io/averagepower
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Our findings resolve this seeming puzzle. When con-
sidered alongside the results reported by Cuddy et al. 
(2018) and Schimmack and Brunner (2017), they 
strongly suggest that the interval estimate reported by 
Simmons and Simonsohn (2017) and obtained via the 
so-called p-curve meta-analytic model is optimistically 
narrow if taken as a measure of precision.

We note that the narrow interval estimate reported 
by Simmons and Simonsohn (2017) indeed reflects the 
low point estimate, as per the dashed curve depicting 
Scenario 2 in Figure 3, because the so-called p-curve 
meta-analytic model employs the same statistical model 
as the Hedges (1984) selection model considered in 
Scenario 2, notwithstanding the inferior estimation strat-
egy employed by the former (McShane, Böckenholt, & 
Hansen, 2016).

Discussion

In this article, we have clarified the nature of average 
power and its implications for replicability. We have 
explained that average power is not relevant to the 
replicability of actual prospective replication studies. 
Instead, it relates to efforts in the history of science to 
catalogue the power of prior studies

We have also evaluated the statistical properties of 
point estimates and interval estimates of average power 
obtained via the meta-analytic approach. We found that 
point estimates of average power are too variable and 
inaccurate for use in application. We also found that the 
width of interval estimates of average power depends 
on the corresponding point estimates; consequently, the 
width of an interval estimate of average power cannot 
serve as an independent measure of the precision of the 
point estimate.

We note that these results also hold for alternative 
measures of central tendency, such as median power, 
because these measures are all equivalent in the sce-
narios we have considered.

We also note that our assessments are optimistic in 
that point estimates of average power will be more 
variable, and thus less accurate, in more realistic sce-
narios and thus in application. Specifically, very seldom 
in practice (a) is the meta-analytic model correctly 
specified, (b) is it as simple as the one-parameter meta-
analytic models considered here (e.g., more typical 
meta-analytic models attempt to account for heteroge-
neous effect sizes, study-level moderators, publication 
bias, and other factors), and (c) is the sampling variance 
of each study known. These issues will, among other 
things, tend to increase the variability of point estimates 
of average power—even if the estimates remain cen-
tered near the true value, which is, of course, far from 
given—and thus make them less accurate than in the 

scenarios considered here. For example, as illustrated 
in Scenario 2, attempting to address publication bias 
by estimating the meta-analytic model based only on 
studies with results that are statistically significant 
causes estimates to be much more variable and thus 
much less accurate. These issues are exacerbated 
because seldom are a large number of studies available 
for estimating average power.

To conclude, although estimates of average power 
obtained via the meta-analytic approach are too vari-
able and inaccurate to be useful, we emphasize that 
this does not imply that meta-analysis is not useful. 
Indeed, meta-analysis has much to offer beyond the 
estimation of average power. Meta-analysis has tradi-
tionally been used for the estimation of effect sizes, in 
particular the variation in effect sizes and moderators 
of this variation, and this of course remains useful. 
Indeed, because these quantities are genuine param-
eters of the underlying meta-analytic model, whereas 
average power is a derived conditional quantity, (a) 
they are not wed to prior study design choices, includ-
ing sample sizes, whereas average power is, and (b) 
they therefore are relevant to the replicability of actual 
prospective replication studies, whereas average power 
is not. Further, meta-analysis remains useful for cata-
loguing the various designs, dependent variables, mod-
erators, and other methods factors used in studies in a 
given domain. In sum, meta-analysis remains useful as 
it has traditionally been used, but it is not useful for 
estimating average power.

Appendix

In this appendix, we further investigate estimates of 
average power obtained via the meta-analytic approach 
by means of an analytic treatment that generalizes the 
two scenarios examined in the main text of this article. 
Specifically, suppose that one is interested in estimating 
the average power of a set of k independent studies 
that all follow a two-condition between-subjects design; 
that the effect of interest, δ, is the difference between the 
means of the two conditions; that this difference is com-
mon across studies; that the individual-level observations 
are normally distributed with these respective means and 
known variance (which we assume without loss of gen-
erality is equal to 1 such that δ is on the standardized 
Cohen’s d scale); and that the sample size per condition, 
n, is equal within each study and across studies.

In this case, individual study effect-size estimates are 
distributed ˆ ( , / )δ ∼ δi N niid 2 , and individual study test sta-
tistics, Zi i n= ˆ / /δ 2 , are distributed Z N Zi ∼iid ( , )1 , where Z = 
δ/ 2 /n . Given this, the power of study i is π Φ − −αi Z= ( ),Z1  

and thus average power is π π Φ −Σ −α= ==
1

1 1k i
k

i Z( )Z , 
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where Φ denotes the cumulative distribution function 
of the standard normal distribution, Z1−α denotes the  
1 – α quantile of the standard normal distribution, and 
α denotes the size of the (one-tailed) test. Power and 
thus average power therefore depend on δ and n only 
via Z, and Z can be set to achieve a target level of 
power by inverting the previous equations; for example, 
setting Z to 0.678, 1.118, 1.436, 1.707, 1.960, 2.213, 2.484, 
2.802, and 3.242 and α to .025 achieves the nine respec-
tive target levels of power examined in the main text of 
this article.

Now, let w ≥ 0 be the likelihood that studies with 
results that are not statistically significant, relative to 
those with results that are statistically significant, are 
included the meta-analysis. When 0 ≤ w < 1, studies 
with results that are not statistically significant are less 
likely than studies with results that are statistically sig-
nificant to be included in the meta-analysis; when w = 
1, studies with results that are not statistically significant 
are equally likely as studies with results that are statisti-
cally significant to be included in the meta-analysis; and 
when w > 1, studies with results that are not statistically 
significant are more likely than studies with results that 
are statistically significant to be included in the meta-
analysis. This relative likelihood, w, can be treated as 
known or unknown (in which case it is estimated).

Now, suppose that one estimates the meta-analytic 
model using the maximum likelihood estimator for the 
correctly specified statistical model for the observed 
data. Given this, the likelihood function is given by
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where ϕ denotes the probability density function of the 
standard normal distribution and the denominator sim-
plifies to wΦ(Z1–α – Z) + Φ(Z – Z1–α). Consequently, the 
log likelihood is given by
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where k– is the number of studies with results that are 
not statistically significant.

Maximizing the likelihood (or, equivalently, the log 
likelihood) over Z and w yields the maximum likeli-
hood estimators Ẑ and ŵ of the two respective param-
eters. The former, in turn, yields the maximum 
like lihood estimators, ˆ ˆ /δ = Z n2 , π̂i = Φ(Ẑ  – Z1–α), and 
π π ΦΣ α
� �= == ( ˆ – )–

1
1 1k i

k
i Z Z , of δ, the πi, and π, respec-

tively. We note that δ̂ constitutes the revised estimate 

of the effect size of each prior study under meta-analytic 
models like those considered here.

Taking partial derivatives of the log likelihood yields
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Equations 2 and 3 can be jointly set to 0 and solved for 
Z and w to yield the maximum likelihood estimators Ẑ 
and ŵ . Before considering this general case, we con-
sider three special cases.

First, in Scenario 1 of the main text, w is known and 
equal to 1, and so Equation 2 simplifies to k Z – kZ. This 
equation can be set to 0 and solved for Z to yield Ẑ , 
and Equation 3 is not necessary. Doing so yields Ẑ  = 
Z , which is clearly distributed N(Z,1/k). Given this, δ�  is 
clearly distributed N(δ,2/nk), and π̂ has, by change of 
random variables, a sampling distribution with proba-
bility density function given by
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Second, in Scenario 2 of the main text, w is known 
and equal to 0, and so Equation 2 simplifies to 
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. This equation can be set to 0 

and solved numerically for Z to yield Ẑ , which in turn 
yields δ�  and π̂, and Equation 3 is not necessary.

Third, and more generally, when w is known, Equa-
tion 2 simplifies. This equation can be set to 0 and 
solved numerically for Z to yield Ẑ , which in turn yields 
δ�  and π̂, and Equation 3 is not necessary.

Finally, and most generally, when w is unknown, 
Equations 2 and 3 can be jointly set to 0 and solved 
numerically for Z and w to yield Ẑ  and ŵ, the former 
of which in turn yields δ�  and π̂. However, one can 
instead set Equation 3 to 0 and solve for w as a function 
of Z, which yields
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where k+ = k – k– is the number of studies with results 
that are statistically significant. Then, w(Z) can be 
plugged into Equation 2. This equation can be set to 0 
and solved numerically for Z to yield Ẑ , which in turn 
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yields ŵ  (by plugging Ẑ into the right-hand side of 
Equation 5), δ� , and π̂.

When the individual-level observations in each condi-
tion are normally distributed with common but unknown 
variance, individual study test statistics are indepen-
dently distributed according to a noncentral t distribution 
with common effect size rather than according to a nor-
mal distribution with common effect size and known 
variance. In this case, the likelihood function follows a 
form similar to that of Equation 1, being given by
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where fλ,ν and Fλ,ν, respectively, denote the probability 
density function and cumulative distribution function 
of the noncentral t distribution with noncentrality 
parameter λ and degrees of freedom ν, t1–α,ν denotes 
the 1 – α quantile of the central t distribution with 
degrees of freedom ν, and ν = 2n – 2. Although in 
principle we could take partial derivatives of the log 
likelihood, we instead use numeric methods.
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Notes

1. It is conventional to evaluate the accuracy of an estimator in 
terms of the estimator’s mean square error or its square root, 
the root mean square error. Because the mean square error of 
an estimator is the sum of the square of the bias of the estima-
tor and the variance of the estimator, low bias and low variance 
are both necessary for an estimator to be accurate, but neither 
alone is sufficient. However, either high bias or high variance 
suffices for an estimator to be inaccurate. The fact that vari-
ability is high in the scenarios we consider justifies our focus 
on variability to the exclusion of bias. Further, the fact that bias 
is low relative to variance in the scenarios we consider implies 
that the standard error (i.e., the square root of the variance) of 
the estimator, the root mean square error of the estimator, and 
the measure of variability we employ (i.e., the 95% sampling 
distribution width) are all closely related. Indeed, because the 
estimators in the scenarios we consider are asymptotically nor-
mal and unbiased, the standard error and root mean square 
error are asymptotically equal and differ asymptotically from 
the 95% sampling distribution width by a constant factor.
2. These techniques estimate the meta-analytic model based only 
on studies with results that are statistically significant because 
some have argued that, although studies with results that are 
not statistically significant are typically available and could be 
included in a meta-analysis, they should not be because doing 
so requires assumptions about the relative likelihood that stud-
ies with results that are versus are not statistically significant 
are “published” (we use quotes because in this setting, pub-
lished is a technical term that means “available to and deemed 
informative by the meta-analyst and thus included in the meta-
analysis”). Without taking a position on this issue, we note that 
(a) these techniques assume both that studies with results that 
are not statistically significant have zero likelihood of being 
published and that studies with results that are statistically sig-
nificant are all equally likely to be published (i.e., regardless 
of p value) and (b) techniques that do not require such strong 
assumptions have long been available (Dear & Begg, 1992; 
Hedges, 1992; Hedges & Vevea, 2005; Vevea & Hedges, 1995).
3. Under multiparameter meta-analytic models, estimating a con-
fidence interval for average power can be considerably more dif-
ficult because there can be a many-to-one relationship between 
the parameters of the meta-analytic model and average power. 
Although methods are available for estimating such a confidence 
interval, discussion of them is beyond the scope of this article.
4. Simmons and Simonsohn (2017) and Cuddy et  al. (2018) 
reported point and 90% interval estimates of two-tailed aver-
age power. The source code for the so-called p-curve meta-
analytic model can easily be modified to produce 95% rather 
than 90% interval estimates. However, because the p-curve 
meta-analytic model allows for the analysis of statistics that lack 
information about the direction of an effect (i.e., χ2 statistics 
and F statistics), in addition to those that provide such infor-
mation (i.e., z statistics and t statistics), it cannot be modified 
to produce point estimates and interval estimates of one-tailed 
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average power without excluding the former class of statistics. 
However, when power is estimated to be far from the boundary 
of 0, as in the meta-analysis of Cuddy et al., one-tailed and two-
tailed average power are virtually equal. Further, when power 
is estimated to be close to the boundary of 0, as in the meta-
analysis of Simmons and Simonsohn, one-tailed and two-tailed 
average power are also rather similar; this holds because the 
so-called p-curve meta-analytic model bounds point estimates 
and interval estimates of two-tailed average power at α = .05 
when the point estimate or interval estimate is deemed by the 
model to lack “evidentiary value.” Consequently, Simmons and 
Simonsohn’s 95% interval estimate of two-tailed average power 
(i.e., [.05, .18]) is a not-unreasonable proxy for a 95% inter-
val estimate of one-tailed average power (although [.025, .18], 
assuming a bound, or [.00, .18], assuming no bound, would be 
more appropriate for one-tailed average power). Schimmack 
and Brunner (2017) reported point and 95% interval estimates 
of one-tailed average power.
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