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Meta-analysis typically involves the analysis of summary 
data (e.g., means, standard deviations, and sample 
sizes) from a set of studies via a statistical model that 
is a special case of a hierarchical (or multilevel) model. 
The common summary-data approach to meta-analysis 
is the basic random-effects meta-analytic model, and 
this approach is overwhelmingly dominant in psycho-
logical research (e.g., in meta-analyses published in 
Psychological Bulletin; Stanley, Carter, & Doucouliagos, 
2018; van Erp, Verhagen, Grasman, & Wagenmakers, 
2017). However, recent work demonstrates that meta-
analytic practice in psychology is in need of improve-
ment (Tipton, Pustejovsky, & Ahmadi, 2019), and this is 
consistent with the fact that this model is often employed 
in settings where the complexity of the data warrants 
richer and more appropriate approaches.

Specifically, the basic random-effects meta-analytic 
model is a univariate, two-level model. Consequently, 
it is suitable only when there is a single group of sub-
jects (or a single experimental condition), a single 
dependent measure, and a single effect of interest in 
each study. This is seldom the case in contemporary 
psychological research studies, and when there is more 
than one of any of these, the approach can be prob-
lematic, and more extensive results can be obtained via 
richer and more appropriate summary-data approaches.
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Abstract
Meta-analysis typically involves the analysis of summary data (e.g., means, standard deviations, and sample sizes) from 
a set of studies via a statistical model that is a special case of a hierarchical (or multilevel) model. Unfortunately, the 
common summary-data approach to meta-analysis used in psychological research is often employed in settings where 
the complexity of the data warrants alternative approaches. In this article, we propose a thought experiment that can 
lead meta-analysts to move away from the common summary-data approach to meta-analysis and toward richer and 
more appropriate summary-data approaches when the complexity of the data warrants it. Specifically, we propose 
that it can be extremely fruitful for meta-analysts to act as if they possess the individual-level data from the studies 
and consider what model specifications they might fit even when they possess only summary data. This thought 
experiment is justified because (a) the analysis of the individual-level data from the studies via a hierarchical model 
is considered the “gold standard” for meta-analysis and (b) for a wide variety of cases common in meta-analysis, the 
summary-data and individual-level-data approaches are, by a principle known as statistical sufficiency, equivalent 
when the underlying models are appropriately specified. We illustrate the value of our thought experiment via a case 
study that evolves across five parts that cover a wide variety of data settings common in meta-analysis.

Keywords
meta-analysis, hierarchical model, multilevel model, random effects, heterogeneity, between-study variation,  
open data, open materials

Received 6/19/18; Revision accepted 10/2/19

mailto:b-mcshane@kellogg.northwestern.edu
https://sagepub.com/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2515245919884304&domain=pdf&date_stamp=2019-11-26


82 McShane, Böckenholt

In this article, we propose a thought experiment that 
can lead meta-analysts to move away from the common 
summary-data approach to meta-analysis and toward 
richer and more appropriate summary-data approaches 
when the complexity of the data warrants it. Specifi-
cally, we propose that it can be extremely fruitful for 
meta-analysts to act as if they possess the individual-
level data from the studies and consider what model 
specifications they might fit even when they possess 
only summary data.

This thought experiment is justified by considering 
the following two facts in tandem. First, although meta-
analysis is often equated to the analysis of summary 
data, the analysis of the individual-level data from the 
studies via a hierarchical model is considered the “gold 
standard” for meta-analysis (Cooper & Patall, 2009; 
Haidich, 2010; Simmonds et al., 2005; Stewart & Tierney, 
2002). Second, however, for a wide variety of cases com-
mon in meta-analysis, the summary-data and individual-
level-data approaches are, by a principle known as 
statistical sufficiency, equivalent when the underlying 
models are appropriately specified.

The value of our thought experiment is twofold. 
First, it makes clear whether or not there is a single 
group of subjects (or a single experimental condition), 
a single dependent measure, and a single effect of 
interest in each study. Second, when there is more than 
one of any of these, it suggests not only that one should 
move away from the common summary-data approach 
to meta-analysis but also how one might move away 
from it and toward richer and more appropriate summary-
data approaches.

Such summary-data approaches to meta-analysis are 
by no means new. Indeed, they were introduced and 
applied in noted research articles (Berkey, Hoaglin, 
Antczak-Bouckoms, Mosteller, & Colditz, 1998; Kalaian 
& Raudenbush, 1996; Raudenbush, Becker, & Kalaian, 
1988; Rosenthal & Rubin, 1986), have been covered in 
classic textbooks (Hedges & Olkin, 1985; Raudenbush 
& Bryk, 2002) and handbooks (Becker, 2000; Cooper 
& Hedges, 1994; Cooper, Hedges, & Valentine, 2009), 
and remain the subject of research (Cheung, 2015; 
McShane & Böckenholt, 2017, 2018b).

It is not our intent to provide a full review of these 
approaches. Instead, we illustrate via case study how our 
proposed thought experiment, based on the equivalence 
of the summary-data and individual-level-data approaches, 
can lead to increased use of these approaches when the 
complexity of the data warrants it. However, we note 
that these richer and more appropriate summary-data 
approaches generalize the common summary-data 
approach along four principal dimensions, to accommo-
date (a) an arbitrary number of groups of subjects arising 

from discrete individual-level covariates (or, alternatively, 
an arbitrary number of experimental conditions arising 
from the manipulation of one or more discrete experi-
mental factors), (b) an arbitrary number of levels that 
account for the variation and covariation in effect sizes 
(also known as heterogeneity) induced by the fact that 
observations are nested (e.g., individuals nested within 
demographic groups nested within countries, subjects 
nested within study conditions nested within studies 
nested within articles, and students nested within class-
rooms nested within schools), (c) an arbitrary number of 
dependent measures, and (d) study-level covariates  
(or moderators). Consequently, we organize our case 
study to evolve across these four dimensions.

Following our case study, we conclude by discussing 
these four dimensions with respect to which our thought 
experiment can be beneficial, using the case study for 
illustration, two potential objections to our thought 
experiment, and some advantages that individual-level 
data offer over summary data despite the fact that the 
two may be equivalent for the purpose of conceptual-
izing the model specification.

Disclosures

The data and code for our case study are available both 
as Supplemental Material (http://journals.sagepub.com/
doi/suppl/10.1177/2515245919884304) and at the Open 
Science Framework (https://osf.io/ua9h4/).

Case Study

This case study illustrates how it can be extremely fruit-
ful for meta-analysts to act as if they possess the 
individual-level data and consider what model specifica-
tions they might fit even when they possess only sum-
mary data. The case study evolves across five parts that 
cover a wide variety of data settings common in meta-
analysis. Specifically, the data sequentially build in com-
plexity across the parts, which in turn necessitates 
increasingly complex model specifications that also 
sequentially build upon one another. In each part, we 
show how the results produced by a model fit to the 
individual-level data can be matched by an appropri-
ately specified model fit to the summary data, thereby 
illustrating the equivalence of the summary-data and 
individual-level-data approaches to meta-analysis—and 
thus the value of our thought experiment—in a straight-
forward manner across a sequence of increasingly com-
plex data settings.

In Part I, there are a single group of subjects and a 
single dependent measure in each study, two levels in 
the nesting structure of the data, and no study-level 

http://journals.sagepub.com/doi/suppl/10.1177/2515245919884304
http://journals.sagepub.com/doi/suppl/10.1177/2515245919884304
https://osf.io/ua9h4/
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covariates. Interest centers on the overall average of 
the dependent measure. The common summary-data 
approach to meta-analysis is fully appropriate in this 
setting, and we illustrate its equivalence to the individual-
level-data approach.

In Part II, the case study evolves to include two 
groups of subjects in each study and thus three levels 
in the nesting structure. Even though this is the 
canonical setting for the common summary-data 
approach presented in introductory meta-analysis 
textbooks (see, e.g., Borenstein, Hedges, Higgins, & 
Rothstein, 2009) and this approach is overwhelmingly 
dominant in practice in this setting and beyond, we 
illustrate how it is less appropriate than the individual-
level-data approach in that the latter provides more 
extensive results, in particular with regard to hetero-
geneity. We then illustrate how the individual-level-
data approach can lead one to consider a richer and 
more appropriate summary-data approach to meta-
analysis that is equivalent to the individual-level-data 
approach.

In Parts III through V, the case study evolves to 
include several (four) groups of subjects in each study, 
study-level covariates, and multiple (three) dependent 
measures, respectively. We illustrate further deficien-
cies of the common summary-data approach and how 
individual-level-data and richer summary-data approaches 
are equivalent, are more appropriate, and provide more 
extensive results.

We summarize the evolution of the case study in 
Table 1, which shows the four dimensions across 
which the five parts vary. There are important distinc-
tions regarding the levels of each dimension. The pri-
mary distinction regarding the number of groups is, 
as discussed in Parts I through III, one versus two 
versus several (i.e., more than two). An important 
empirical distinction regarding the number of levels 
is also one versus two versus several. One-level mod-
els do not allow for between-study variation in effect 
sizes, two-level models allow for between-study varia-
tion but not covariation, and three- and higher-level 
models allow for both between-study variation and 
covariation; given recent empirical work documenting 
that between-study variation is rife in psychological 
research (McShane, Tackett, Böckenholt, & Gelman, 
2019; Stanley et al., 2018; van Erp et al., 2017), one-
level models are seldom appropriate, and the choice 
between two-level models and three- and higher-level 
models will, as discussed in Part II, depend on the 
nesting structure of the data. The primary distinction 
regarding the number of dependent measures is, as 
discussed in Part V, one versus multiple (i.e., more 
than one). Finally, the primary distinction regarding 
study-level covariates is obviously, as discussed in Part 
IV, their absence or presence.

Data

The original data on which our principal data are based 
are from Johnson (2014), who administered the IPIP-
NEO-120 to 619,150 individuals; these original data are 
available at the Open Science Framework (https://osf 
.io/wxvth). The IPIP-NEO-120 is a 120-item inventory 
designed to yield assessments of each of the five broad 
domains of the five-factor model of personality, as well 
as each of the six narrower facets of each of the five 
broad domains. It features 24 items per domain, and 4 
items per facet. Responses are on the 1- to 5-point 
integer scale. The data contain the response of each 
individual to each item, as well as the sex, age, and 
country of each individual.

We defined college-age individuals as those ages 18 
to 21 inclusive and adults as individuals over the age 
of 21. We restricted our analysis to the 47 countries 
with at least 25 individuals in each of the four groups 
defined by sex and age (i.e., (female, male) × (adult, 
college)); in the case of countries with more than 100 
individuals in a given group, we randomly subsampled 
100 individuals from the group.

In the first three parts of our case study, we treat the 
data from each country simply as a separate study. In 
the fourth and fifth parts, we model differences among 
countries. To do so, we augment our principal data with 
the latitude measurement of the capital city of each 
country, available at https://www.latlong.net.

Part I: one group and two levels

We begin with the data setting depicted in the first row 
of Table 1. Suppose a personality psychologist was 
interested in conducting a meta-analysis of extraversion 
in adult males. Toward this end, he gathered data from 
47 studies, in all of which extraversion was measured 
via the simple average of the 24 extraversion items 
included in the IPIP-NEO-120.

The common summary-data approach to meta-analysis 
of these data involves the following. Let yi denote the 
mean of the individual-level data (i.e., extraversion 
scores) in study i. The model specification for the yi is 
given by

Table 1. Case-Study Schema

Part
Number 

of groups
Number 
of levels

Number of 
dependent 
measures

Study-level 
covariates

Part I One Two One No
Part II Two Three One No
Part III Four Three One No
Part IV Four Three One Yes
Part V Four Three Three Yes

https://osf.io/wxvth
https://osf.io/wxvth
https://www.latlong.net
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yi i i= + +α β ε ,

where α is treated as a fixed effect that models overall 
average extraversion, the βi are treated as random 
effects for each study, and the εi are random errors for 
each study. The model further assumes that the βi are 
independent and identically normally distributed with 
mean zero and variance τ2, the εi are independent nor-
mally distributed with mean zero and variance vi, and 
there is zero covariation among the βi and εj. This 
model is sometimes called the basic random-effects 
meta-analytic model; it is also sometimes called the 
two-level meta-analytic model because it allows for 
heterogeneity in effect sizes across studies (Level 2) via 
τ2, as well as sampling error (Level 1) via the vi. We 
note that throughout this article, (a) terms denoted by 
a τ2 (or a T in Part V) model heterogeneity, (b) terms 
denoted by a v or a σ2 (or a V or a Σ, respectively, in 
Part V) model sampling error, and (c) terms denoted 
by a v (or a V in Part V) are, despite being estimates, 
treated as known, as is standard in the summary-data 
approach to meta-analysis.

A common approach to estimation of this model 
involves (a) estimating the sampling variances vi in each 
study using the conventional formula (i.e., the variance 
of the individual-level data in each study divided by 
the sample size), (b) estimating τ2 using restricted (or 
residual or reduced) maximum likelihood (REML) con-
ditional on the estimates of the vi, and (c) estimating α 
and its standard error using the standard best-linear-
unbiased-prediction (BLUP) estimators conditional on 
the estimates of the vi and τ2 (Harville, 1977; Robinson, 
1991). This estimation approach or an analogue of it is 
followed in all summary-data approaches to meta-
analysis in this case study.

The individual-level-data approach to meta-analysis 
of these data involves the following. Let yik denote the 
individual-level data (i.e., extraversion score) for indi-
vidual k in study i. The model specification for the yik 
is given by

yik iki= + +α β ε ,

where α is treated as a fixed effect that models overall 
average extraversion, the βi are treated as random effects 
for each study, and the εik are random errors for each 
individual. The model further assumes that the βi are 
independent and identically normally distributed with 
mean zero and variance τ2, the εik are independent and 
identically normally distributed with mean zero and 
variance σ2, and there is zero covariation among the βi 
and εik. This model is sometimes called the two-level 
hierarchical model because it allows for heterogeneity 

in effect sizes across studies (Level 2) via τ2, as well as 
sampling error (Level 1) via σ2.

A common approach to estimation of this model 
involves (a) estimating τ2 and σ2 using REML and (b) 
estimating α and its standard error using the standard 
BLUP estimators conditional on the estimates of τ2 and 
σ2. This estimation approach or an analogue of it is 
followed in all individual-level-data approaches to 
meta-analysis in this case study.

Results for the summary-data approach (Summary 
Data I column) and individual-level-data approach 
(Individual-Level Data column) are presented in Table 
2. We note that throughout this article, we provide 
excess digits in our tables of results to facilitate the abil-
ity of the reader to verify the reproducibility of the 
results via our Supplemental Material. Overall average 
extraversion is estimated to be about 3.35 on the 5-point 
integer scale. More interesting, however, is the consid-
erable variability in this average across the studies: The 
estimate of heterogeneity of about 0.10 indicates that 
average extraversion typically ranged between 3.15 and 
3.55 in these studies (throughout this article, estimates 
of heterogeneity are presented as standard deviations 
unless otherwise noted, so that they are on the same 
scale as the effect estimates).

The table shows that the results for the two 
approaches are extremely similar but not identical. This 
is due to the fact that they make slightly different 
assumptions about the variance of the random errors 
of the individual-level data. Specifically, the summary-
data approach assumes that this variance is known and 
may differ across studies, whereas the individual-level-
data approach assumes that it is unknown and common 
across studies.

Although the assumption of known variance is nec-
essary in the summary-data approach (i.e., because the 
variances of the random effects and random errors are 
confounded), the assumption of differing variance is 

Table 2. Results for Case Study Part I

Effect (α) or  
level (τ)

Summary 
Data I

Summary 
Data II

Individual-level 
data

α estimates
Adult male 3.3461  

(0.0175)
3.3438  

(0.0178)
3.3438  

(0.0178)

τ estimates
Study 0.1049 0.1070 0.1070

Note: Values inside parentheses are estimates of standard errors. 
Results for the common summary-data approach (see the text) are 
given in the Summary Data I column, and results for the common 
summary-data approach using the estimate of σ2 from the individual-
level-data approach in place of the variance of the individual-level 
data in each study are given in the Summary Data II column.
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not. In fact, when the two approaches are forced to 
make the same assumption (e.g., by using the estimate 
of σ2 from the individual-level-data approach in place 
of the variance of the individual-level data in each 
study), then they truly are equivalent and yield identical 
results, as indicated by the Summary Data II and 
Individual-Level-Data columns in the table.

Part II: two groups and thus three levels

We proceed to the data setting depicted in the second 
row of Table 1. Suppose a personality psychologist was 
interested in conducting a meta-analysis of extraversion 
in adult females and males. Toward this end, he gath-
ered data from 47 studies, in all of which extraversion 
was measured via the simple average of the 24 extraver-
sion items included in the IPIP-NEO-120.

The common summary-data approach to meta-
analysis of these data proceeds as in Part I; however, 
yi is now defined as some contrast or other statistic that 
collapses across the groups of subjects arising from 
discrete individual-level covariates such as sex (or, 
alternatively, across the experimental conditions arising 
from the manipulation of one or more discrete experi-
mental factors).

A common choice for yi is the standardized mean 
difference (or Cohen’s d), that is, the difference between 
the means of the two groups (or experimental condi-
tions) divided by the pooled standard deviation. How-
ever, it is preferable in meta-analysis, as in statistical 
analysis more generally, to model the data on the origi-
nal measurement scale when possible (Baguley, 2009; 
Bond, Wiitala, & Richard, 2003; Greenland, Schlesselman, 
& Criqui, 1986; Tukey, 1969; Wilkinson, 1999); there-
fore, when all studies use the same measurement scale 
for the dependent measure (or measures) of interest 
(as here), the raw mean difference is preferable to the 
standardized mean difference. Regardless, and as noted, 
this setting is the canonical setting for the common 
summary-data approach presented in introductory 
meta-analysis textbooks, and this approach is over-
whelmingly dominant in practice in this setting and 
beyond.

Results for the summary-data approach using the 
standardized mean difference and raw mean difference 
are presented in Table 3 (Summary Data I column and 
Summary Data II column, respectively); for the reasons 
just mentioned, we discuss only the latter. Overall aver-
age extraversion is estimated to be about 0.04 lower in 
males than in females on the 5-point integer scale. 
Again, however, more interesting is the considerable 
variability in this difference across the studies: The 
estimate of heterogeneity of about 0.10 indicates that 
this difference typically ranged between –0.16 and 0.24 
in these studies.

The individual-level-data approach to meta-analysis 
of these data involves the following. Let yijk denote the 
individual-level data for individual k in group (i.e., sex) 
j in study i. The model specification for the yijk is given 
by

yijk = + + +α β γ εj i ij ijk ,

where the αj are treated as fixed effects that model 
overall average extraversion for each group, the βi are 
treated as random effects for each study, the γij are 
treated as random effects for each study group, and the 
εijk are random errors for each individual. The model 
further assumes that the βi are independent and identi-
cally normally distributed with mean zero and variance 
τ3
2, the γij are independent and identically normally dis-

tributed with mean zero and variance τ2
2 , the εijk are 

independent and identically normally distributed with 
mean zero and variance σ2, and there is zero covaria-
tion among the βi, γij, and εijk. This model is sometimes 
called the three-level hierarchical model because it 
allows for heterogeneity in effect sizes across studies 
(Level 3) via τ3

2 and heterogeneity in effect sizes across 
study groups within studies (Level 2) via τ2

2—and thus 
variation and covariation in effect sizes—as well as 
sampling error (Level 1) via σ2.

Before proceeding to the results, we note an impor-
tant distinction between the two-level model discussed 
earlier and this three-level model that arises when there 
is, as in this setting, more than one group of subjects per 
study. Specifically, because the two-level model is fit to 
a contrast such as a mean difference, it is limited in the 
degree to which it can account for heterogeneity. In 
particular, any heterogeneity that is common across the 
groups in a given study cannot be accounted for, and 
the only heterogeneity that can be accounted for is that 
which is idiosyncratic to each group; in other words, 
heterogeneity involving between-study differences in 
levels is not identified, and only heterogeneity involving 
between-study differences in differences (i.e., contrasts) 
is identified. In contrast, this three-level model can 

Table 3. Results for Case Study Part II: Common Summary-
Data Approaches

Effect (α) or level (τ) Summary Data I Summary Data II

α estimates
Contrast –0.0718 (0.0325) –0.0405 (0.0182)

τ estimates
Study 0.1699 0.0957

Note: Values inside parentheses are estimates of standard errors. 
Results for the common summary-data approach using the 
standardized mean difference are given in the Summary Data I 
column, and results for the common summary-data approach using 
the raw mean difference are given in the Summary Data II column.
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account for both—accounting for differences in levels 
via τ3

2 and differences in differences via τ2
2—and thus is 

preferable when applicable, as in this setting. Given this, 
it is perhaps surprising that this setting is the canonical 
setting for the common summary-data approach pre-
sented in introductory meta-analysis textbooks and that 
this approach is overwhelmingly dominant in practice 
in this setting and beyond.

To make this concern more concrete in the context 
of this data setting, consider three scenarios. In the first 
scenario, assume that the bulk of the individual-level 
extraversion scores—regardless of subjects’ sex—cluster 
toward the low part of the 5-point integer scale in some 
studies, toward the middle in others, and toward the 
high part in still others; further assume that the average 
difference between the two sexes is relatively stable 
across the studies. Thus, in this scenario, the studies 
tend to differ in levels but not in differences between 
groups; to put it differently, the heterogeneity that is 
common across the groups in a given study is relatively 
high, whereas the heterogeneity that is idiosyncratic to 
each group is relatively low. In this case, because the 
two-level model can account only for the latter but not 
the former, it would incorrectly assess heterogeneity to 
be quite low—despite the fact that the individual-level 
extraversion scores differ considerably across studies.

Next, consider a second scenario that is the oppo-
site of the first scenario. Specifically, assume that the 
bulk of the individual-level extraversion scores—
regardless of subjects’ sex—tend to cluster toward the 
same part of the 5-point integer scale (say, the middle) 
in all the studies; further assume that the average dif-
ference between the two sexes is rather different across 
the studies. Thus, in this scenario, the studies tend to 
differ in differences between groups but not in levels; 
to put it differently, the heterogeneity that is common 
across the groups in a given study is relatively low, 
whereas the heterogeneity that is idiosyncratic to each 
group is relatively high. In this case, because the two-
level model can account for the latter, it would correctly 
assess heterogeneity to be quite high.

Finally, consider a third scenario that combines the 
first and second scenarios. Specifically, assume that the 
individual-level extraversion scores—regardless of sub-
jects’ sex—cluster toward the low part of the 5-point 
integer scale in some studies, toward the middle in 
others, and toward the high part in still others; further 
assume that the average difference between the two 
sexes is rather different across the studies. Thus, in this 
scenario, the studies tend to differ both in levels and 
in differences between groups; to put it differently, both 
the heterogeneity that is common across the groups in 
a given study and the heterogeneity that is idiosyncratic 
to each group are relatively high. In this case, because 

the two-level model can account only for the latter but 
not the former, it would incorrectly assess heterogeneity 
to be substantially lower than it is.

In sum, the two-level model can only partially 
account for heterogeneity in these three scenarios. In 
contrast, because the three-level model can account for 
both heterogeneity that is common across the groups 
and heterogeneity that is idiosyncratic to each group, 
it can fully account for heterogeneity and thus would 
correctly assess it in all three scenarios.

Results for the individual-level-data approach in this 
part of the case study are presented in Table 4 (Individual-
Level Data column). Overall average extraversion is 
again estimated to be about 0.04 lower in males than 
in females. More interesting is the considerable hetero-
geneity. In particular, the total heterogeneity from one 
group of subjects in one study to another group of 
subjects in another study is estimated to be about 0.10 
(i.e., 0 0697 0 06882 2. .+ ). Further, about half (i.e., 0.06972/
(0.06972 + 0.06882)) of this heterogeneity is common to 
the groups within a given study. Thus, we have gleaned 
something from the individual-level-data approach that 
we could not have gleaned from the common summary-
data approach, namely, that there is not only variation 
but also covariation in effect sizes: If the males in a 
given study tended to be more extraverted than the 
males in other studies, the females in that study also 
tended to be more extraverted than the females in other 
studies.

Before proceeding, we note that it is simply a coin-
cidence that the estimate of total heterogeneity obtained 
via the individual-level-data approach to these data is 
similar to that obtained via the common summary-data 
approach. In general, this will not be the case. How-
ever, the estimate of study-group heterogeneity obtained 
via the individual-level-data approach will, in general, 
be half the estimate of heterogeneity obtained via the 
common summary-data approach when presented as a 
variance and when applied to a simple contrast between 
two groups, as we have done here (i.e., 0.06882 ≈ 

Table 4. Results for Case Study Part II: Richer Approaches

Effect (α) or  
level (τ)

Summary  
Data III

Individual-level  
data

α estimates
Adult female 3.3864 (0.0163) 3.3870 (0.0165)
Adult male 3.3470 (0.0165) 3.3438 (0.0165)

τ estimates
Study 0.0703 0.0697
Study group 0.0673 0.0688

Note: Values inside parentheses are estimates of standard errors. 
Results for the richer summary-data approach (see the text) are given 
in the Summary Data III column.
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0.09572/2; strict equality would hold but for the slightly 
different assumptions that the two approaches make 
about the variance of the random errors); more gener-
ally, this relationship is determined by the specific con-
trast vector employed.

The more extensive results provided by the individual-
level-data approach illustrate how it can be fruitful for 
meta-analysts to act as if they possess the individual-
level data and consider what model specifications they 
might fit even when they possess only summary data. 
For example, such a meta-analyst might seek to mimic 
the individual-level-data approach via a richer and 
more appropriate summary-data approach. Specifically, 
let yij denote the mean of the individual-level data in 
group (i.e., sex) j in study i. A summary-data model 
specification for the yij equivalent to the individual-
level-data model specification given earlier is

yij j i ij ij= + + +α β γ ε ,

where the αj are treated as fixed effects that model 
overall average extraversion for each group, the βi are 
treated as random effects for each study, the γij are 
treated as random effects for each study group, and the 
εij are random errors for each study group. The model 
further assumes that the βi are independent and identi-
cally normally distributed with mean zero and variance 
τ3
2, the γij are independent and identically normally dis-

tributed with mean zero and variance τ2
2, the εij are 

independent normally distributed with mean zero and 
variance vij, and there is zero covariation among the βi, 
γij, and εij. This model is sometimes called the three-
level meta-analytic model because it allows for hetero-
geneity in effect sizes across studies (Level 3) via τ3

2 and 
heterogeneity in effect sizes across study groups within 
studies (Level 2) via τ2

2—and thus variation and covaria-
tion in effect sizes—as well as sampling error (Level 1) 
via the vij.

We note that the model just presented is the special 
case of our (McShane and Böckenholt, 2017) model 
specification that is used when all studies follow a 
between-subjects study design, as in the present case 
(i.e., the study groups are females and males, and thus 
the individuals within one group are distinct from the 
individuals in the other group). It can easily be general-
ized to accommodate any mix of between-subjects and 
within-subjects study designs (see McShane & 
Böckenholt, 2017, for details). An easy-to-use website 
that implements this model and that is discussed in our 
Supplemental Material is available at https://blakemc 
shane.shinyapps.io/spmeta/.

Results for this richer summary-data approach are 
presented in Table 4 (Summary Data III column). As 

the table shows, the results are for all intents and pur-
poses identical to those obtained via the individual-
level approach (they would be strictly identical but for 
the slightly different assumptions the two approaches 
make about the variance of the random errors).

Part III: several groups

We proceed to the data setting depicted in the third 
row of Table 1. Suppose a personality psychologist was 
interested in conducting a meta-analysis of extraversion 
in college-age and adult females and males. Toward 
this end, he gathered data from 47 studies, in all of 
which extraversion was measured via the simple aver-
age of the 24 extraversion items included in the 
IPIP-NEO-120.

With more than two groups, there are multiple 
potential effects of interest (e.g., in this case, the simple 
contrasts between all pairs of the four groups, the main 
effects of sex and age, and the interaction effect). As a 
result, the common summary-data approach to meta-
analysis of these data is even more problematic than in 
Part II. As in that setting, study heterogeneity is not 
identified with this approach because of the differenc-
ing involved in forming a contrast. However, in addi-
tion, the common summary-data approach is suited for 
analyzing only a single effect of interest. To analyze 
multiple effects of interest, it can be applied to each 
one separately. However, this is problematic because 
(a) it falsely assumes independence of the effects and 
thus, inter alia, fails to provide estimates of the covari-
ance of effect-size estimates, (b) it is statistically inef-
ficient because each analysis makes use of only a subset 
of the data, and (c) it yields estimates of heterogeneity 
that have poor statistical properties and that can vary 
across effects. Consequently, we do not consider it.

Instead, we consider the richer summary-data 
approach discussed in Part II, which proceeds as there 
(except that there are now four study groups rather 
than two).

Because of the fact that the richer summary-data 
approach and the individual-level-data approach yield 
essentially identical results (differing only because of the 
slightly different assumptions the two approaches make 
about the variance of the random errors), we do not 
present results for the individual-level-data approach for 
the remainder of our case study; however, those results 
can be reproduced using the data and code in our Sup-
plemental Material. We note that, just as does the richer 
summary-data approach, the individual-level-data 
approach proceeds as in Part II (except that there are 
now four study groups rather than two).

Results for the richer summary-data approach are 
presented in Table 5. Overall average extraversion is 

https://blakemcshane.shinyapps.io/spmeta/
https://blakemcshane.shinyapps.io/spmeta/
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estimated to be highest in adult and college-age females, 
next highest in adult males, and lowest in college-age 
males. Again, however, more interesting is the consider-
able heterogeneity. In particular, the total heterogeneity 
from one group of subjects in one study to another 
group of subjects in another study is estimated to be 
about 0.10 (i.e., 0 0639 0 07472 2. .+ ). Further, about 40% 
(i.e., 0.06392/(0.06392 + 0.07472)) of this heterogeneity 
is common to the groups within a given study. Again, 
if a given group of subjects tended to be more extra-
verted than the same group in other studies, the other 
groups in that study also tended to be more extraverted 
than the corresponding groups in other studies.

Part IV: study-level covariates

We proceed to the data setting depicted in the fourth 
row of Table 1. Suppose a personality psychologist was 
interested in studying how extraversion varied in 
college-age and adult females and males across differ-
ent countries. Toward this end, he gathered data from 
studies conducted in 47 countries, in all of which extra-
version was measured via the simple average of the 24 
extraversion items included in the IPIP-NEO-120. His 
interest centered on whether the climate of the country 
was associated with overall average extraversion in 
each of the four groups; climate was operationalized 
via a single study-level (or, equivalently, country-level) 
covariate, namely, the absolute value of the degree of 
latitude of the country’s capital city.

The common summary-data approach to meta-
analysis of these data is again problematic, for the rea-
sons discussed in Part III, namely, because (a) study (or 
country) heterogeneity is not identified with this 
approach because of the differencing involved in form-
ing a contrast and (b) there are multiple effects of inter-
est. Consequently, we do not consider this approach.

The richer summary-data approach and individual-
level-data approach to meta-analysis with study-level 
covariates proceed as in Part II but with one exception: 

The αj are replaced by αij, which are parameterized as 
follows:

α α α αij j j i pj pix x= + + +0 1 1 . . . ,

where xqi is the value of covariate q in study i and the 
αqj are treated as fixed effects.

Results for the richer summary-data approach are 
presented in Table 6. Overall average extraversion 
decreased among males in countries farther from the 
equator. Nonetheless, substantial country heterogeneity 
and country-group heterogeneity remained.

Part V: multiple dependent measures

We proceed to the data setting depicted in the fifth row 
of Table 1. Suppose a personality psychologist was 
interested in studying how neuroticism, extraversion, 
and openness varied in college-age and adult females 
and males across different countries. Toward this end, 
he gathered data from studies conducted in 47 coun-
tries, in all of which each trait was measured via the 
simple average of the 24 corresponding items included 
in the IPIP-NEO-120.

When there is more than one dependent measure, 
there is the possibility (indeed, the near certainty) of 
covariation among them. This results in the common 
summary-data approach to meta-analysis of these data 
being even more problematic than in Part II and Part 
III. As in those parts, study (or country) heterogeneity 
is not identified with this approach because of the dif-
ferencing involved in forming a contrast, and there are 
multiple effects of interest. However, in addition, the 
common summary-data approach is suited for analyzing 
only a single dependent measure of interest. To analyze 
multiple dependent measures of interest, it can be 

Table 5. Results for Case Study Part III

Effect (α) or level (τ) Estimate

α estimates
Adult female 3.3866 (0.0165)
Adult male 3.3471 (0.0166)
College female 3.3735 (0.0173)
College male 3.2903 (0.0180)

τ estimates
Study 0.0639
Study group 0.0747

Note: Values inside parentheses are estimates of standard errors.

Table 6. Results for Case Study Part IV

Effect (α) or level (τ) Estimate

α estimates
Adult female 3.3535 (0.0395)
Adult male 3.4773 (0.0397)
College female 3.3399 (0.0411)
College male 3.3762 (0.0422)
Adult Female × |Latitude| 0.0009 (0.0010)
Adult Male × |Latitude| –0.0037 (0.0010)
College Female × |Latitude| 0.0010 (0.0011)
College Male × |Latitude| –0.0024 (0.0011)

τ estimates
Country 0.0658
Country group 0.0653

Note: Values inside parentheses are estimates of standard errors.
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applied to each one separately. However, this is prob-
lematic because it assumes independence of the mea-
sures, and thus, inter alia, it fails to provide estimates 
of the covariance of effect-size estimates across mea-
sures, and it assumes zero covariation in effect sizes 
across measures. Consequently, we do not consider this 
approach.

A richer and more appropriate summary-data 
approach to meta-analysis of the three dependent mea-
sures of interest proceeds as in Part II. However, yij 
now denotes the vector of the means of the individual-
level data (i.e., neuroticism, extraversion, and openness 
scores) in group j in study i. Similarly, the αj, βi, γij, and 
εij are now vectors, and thus the βi are independent 
and identically multivariate normally distributed with 
mean zero and variance-covariance matrix T3, the γij 
are independent and identically multivariate normally 
distributed with mean zero and variance-covariance 
matrix T2, the εij are independent multivariate normally 
distributed with mean zero and variance-covariance 
matrix Vij, and there is zero covariation among the βi, 
γij, and εij. Study-level (or country-level) covariates are 
accommodated as in Part IV; the approach taken there 
is applied separately to each element of the αj. This 
model is sometimes called the three-level multivariate 
meta-analytic model because it allows for variation and 
covariation in effect sizes across studies (Level 3) via 
T3 and variation and covariation in effect sizes across 
study groups within studies (Level 2) via T2, as well as 
sampling error (Level 1) via the Vij.

We note that this is a special case of the highly gen-
eral multilevel multivariate compound-symmetry model 
we specified in previous work (McShane & Böckenholt, 
2018b). That model introduces multilevel multivariate 
meta-analysis methodology that simultaneously accom-
modates (a) an arbitrary number of dependent mea-
sures, (b) an arbitrary number of study groups (or an 
arbitrary number of experimental conditions), and (c) 
an arbitrary number of levels that account for the varia-
tion and covariation induced by the fact that the obser-
vations are nested (e.g., within countries and country 
groups, as here, or within articles, studies, and study 
conditions, as in much experimental work). Although 
we do not explore them here, we note that some of the 
more parsimonious special cases of the multilevel mul-
tivariate compound-symmetry model specification (i.e., 
cases that put restrictions on the Tk variance-covariance 
matrices; see McShane & Böckenholt, 2018b) are more 
appropriate in many applied settings than the unre-
stricted version examined here. An easy-to-use website 
that implements the multilevel multivariate compound-
symmetry model and that is discussed in our Supple-
mental Material is available at https://blakemcshane 
.shinyapps.io/mlmvmeta/.

An individual-level-data approach to meta-analysis 
of these data proceeds as in Part II, with the model 
specification presented there generalized along the 
lines just discussed. Specifically, yijk now denotes the 
vector of the individual-level data (i.e., neuroticism, 
extraversion, and openness scores) for individual k in 
group j in study i. Similarly, the αj, βi, γij, and εijk are 
now vectors, and thus the βi are independent and iden-
tically multivariate normally distributed with mean zero 
and variance-covariance matrix T3, the γij are indepen-
dent and identically multivariate normally distributed 
with mean zero and variance-covariance matrix T2, the 
εijk are independent and identically multivariate nor-
mally distributed with mean zero and variance-
covariance matrix Σ, and there is zero covariation 
among the βi, γij, and εijk. Study-level (or country-level) 
covariates are accommodated as in Part IV; the approach 
taken there is applied separately to each element of the 
αj. This model is sometimes called the three-level mul-
tivariate hierarchical model because it allows for varia-
tion and covariation in effect sizes across studies (Level 
3) via T3 and variation and covariation in effect sizes 
across study groups within studies (Level 2) via T2, as 
well as sampling error (Level 1) via Σ.

Results for the richer summary-data approach are 
presented in Tables 7 and 8. Overall average neuroti-
cism is unrelated to distance from the equator, overall 
average extraversion decreases among males in coun-
tries farther from the equator, and overall average open-
ness increases in all groups in countries farther from 
the equator. Nonetheless, substantial country heteroge-
neity and country-group heterogeneity remain. Further, 
although the total heterogeneity from one group of 
subjects in one country to another group of subjects in 
another country is estimated to be about 0.10 for all 
three dependent measures, country heterogeneity is 
larger than country-group heterogeneity for neuroticism 
and openness but roughly equal to country-group het-
erogeneity for extraversion. This means that across 
countries, the four groups covary more strongly with 
respect to neuroticism and openness than with respect 
to extraversion. In addition, the correlation of this het-
erogeneity is moderately positive for extraversion and 
openness at the country level, rather negative for neu-
roticism and extraversion at the country-group level, 
and moderately positive for neuroticism and openness 
at the country-group level.

Discussion

Although the summary-data approach to meta-analysis 
is so widespread that it is often equated with meta-
analysis, the analysis of the individual-level data from 
the studies via a hierarchical model is considered the 

https://blakemcshane.shinyapps.io/mlmvmeta/
https://blakemcshane.shinyapps.io/mlmvmeta/
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gold standard for meta-analysis. However, as we have 
illustrated in this article, the summary-data and individ-
ual-level-data approaches are, for a wide variety of 
cases common in meta-analysis, equivalent when the 
underlying models are appropriately specified.

This equivalence is due to the fact that the mean and 
variance are sufficient statistics for the normal distribu-
tion. Consequently, this equivalence holds more broadly 
than in the examples presented here. For example, 
when studies employ the same measurement scale for 

the dependent measure (or measures) of interest and 
interest centers on one or more contrasts of means of 
groups of subjects (or experimental conditions), the 
two approaches are equivalent regardless of (a) the 
number of groups of subjects (or the number of experi-
mental conditions), (b) the number of levels in the 
nesting structure of the data, (c) the number of depen-
dent measures, and (d) the number of discrete or con-
tinuous study-level covariates; it is only when 
continuous covariates at the individual level are of 
interest that the two approaches are no longer equiva-
lent and the individual-level data are necessary. Similar 
considerations hold also, for example, in the meta-
analysis of regression coefficients.

Given this equivalence, we have proposed that it can 
be extremely fruitful for meta-analysts to act as if they 
possess the individual-level data and consider what 
model specifications they might fit even when they pos-
sess only summary data. This thought experiment can 
lead them to move away from the common summary-
data approach to meta-analysis—that is, the basic 
random-effects meta-analytic model that is overwhelm-
ingly dominant in practice—and toward richer and 
more appropriate summary-data approaches when the 
complexity of the data warrants it.

Specifically, the basic random-effects meta-analytic 
model is a univariate, two-level model. Consequently, 
it is suitable only when there is a single group of sub-
jects (or a single experimental condition), a single 
dependent measure, and a single effect of interest in 
each study. This is seldom the case in contemporary 
psychological research studies, and when there is more 
than one of any of these, the approach can be prob-
lematic, and more extensive results can be obtained via 
richer and more appropriate summary-data approaches.

Our thought experiment can be beneficial with 
respect to the four principal dimensions along which 
these richer and more appropriate summary-data 
approaches generalize the common summary-data 
approach and across which our case study evolved, 

Table 7. Results for Case Study Part V: Principal Estimates

Dependent measure and effect (α) or 
level (T) Estimate

α estimates
Neuroticism
 Adult female 2.8433 (0.0444)
 Adult male 2.6661 (0.0443)
 College female 2.9858 (0.0448)
 College male 2.8143 (0.0453)
 Adult Female × |Latitude| –0.0010 (0.0011)
 Adult Male × |Latitude| –0.0014 (0.0011)
 College Female × |Latitude| –0.0002 (0.0012)
 College Male × |Latitude| –0.0015 (0.0012)
Extraversion  
 Adult female 3.3538 (0.0389)
 Adult male 3.4749 (0.0392)
 College female 3.3440 (0.0404)
 College male 3.3747 (0.0415)
 Adult Female × |Latitude| 0.0009 (0.0010)
 Adult Male × |Latitude| –0.0036 (0.0010)
 College Female × |Latitude| 0.0009 (0.0010)
 College Male × |Latitude| –0.0024 (0.0011)
Openness  
 Adult female 3.4198 (0.0403)
 Adult male 3.4306 (0.0403)
 College female 3.4085 (0.0415)
 College male 3.3163 (0.0415)
 Adult Female × |Latitude| 0.0061 (0.0010)
 Adult Male × |Latitude| 0.0032 (0.0010)
 College Female × |Latitude| 0.0053 (0.0011)
 College Male × |Latitude| 0.0053 (0.0011)

T (standard deviation) estimates

Neuroticism  
 Country 0.0859
 Country group 0.0579
Extraversion  
 Country 0.0635
 Country group 0.0653
Openness  
 Country 0.0888
 Country group 0.0465

Note: Values inside parentheses are estimates of standard errors.

Table 8. Results for Case Study Part V: T Correlation 
Matrix Estimates

Trait Neuroticism Extraversion Openness

Country
Neuroticism 1.0000  .0893  .0141
Extraversion  .0893 1.0000  .2787
Openness  .0141  .2787 1.0000

Country group
Neuroticism 1.0000 –.5544  .3624
Extraversion –.5544 1.0000  .1400
Openness  .3624  .1400 1.0000
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namely, (a) the number of study groups (or experimen-
tal conditions), (b) the number of levels, (c) the number 
of dependent measures, and (d) study-level covariates. 
For example, in Part II of our case study, the thought 
experiment made it clear that there were three levels 
in the nesting structure and therefore the common 
summary-data approach was inadequate—even though 
this is the canonical setting for it presented in introduc-
tory meta-analysis textbooks and this approach is over-
whelmingly dominant in practice in this setting and 
beyond. Instead, we avoided the differencing involved 
in forming a contrast required by the common summary-
data approach and obtained, via a three-level model, 
more extensive results, namely, not only an estimate of 
heterogeneity involving differences in differences (i.e., 
contrasts) across studies but also an estimate of hetero-
geneity involving differences in levels.

Similarly, in Part III of our case study, the thought 
experiment made it clear that there were not only three 
levels in the nesting structure but also multiple poten-
tial effects of interest arising from the fact that there 
were four groups. Therefore, applying the common 
summary-data approach to each effect separately was 
inadequate. Instead, we analyzed the effects simultane-
ously via one coherent and more appropriate three-
level model.

The purpose of Part IV of our case study was to 
illustrate a setting with study-level covariates. The 
thought experiment is also useful in such settings. In 
particular, because the thought experiment makes clear 
the number of levels, it brings to the fore the fact that 
each level can have its own set of covariates, including 
those aggregated from lower levels. Appreciating this 
can also lead to richer and more appropriate summary-
data approaches that provide more extensive results. 
For example, insofar as it suggests as yet unconsidered 
discrete individual-level covariates, it could lead to a 
model with more groups at the second level.

Finally, in Part V of our case study, the thought 
experiment made it clear not only that there were three 
levels in the nesting structure and that there were mul-
tiple potential effects of interest arising from the fact 
that there were four groups, but also that there were 
multiple dependent measures. Therefore, applying the 
common summary-data approach to each effect sepa-
rately was inadequate. Instead, we analyzed the effects 
simultaneously via one coherent and more appropriate 
three-level multivariate model.

In sum, the value of our thought experiment is two-
fold. First, it makes clear whether or not there is a single 
group of subjects (or a single experimental condition), 
a single dependent measure, and a single effect of 
interest in each study. Second, when there is more than 
one of any of these, it suggests not only that one should 

move away from the common summary-data approach 
to meta-analysis but also how one might move away 
from it and toward richer and more appropriate 
summary-data approaches.

Two potential objections to our thought experiment 
are that it requires (a) the dependent measure (or mea-
sures) to be on the same scale across studies and (b) 
statistical sufficiency such that the summary-data and 
individual-level-data approaches are equivalent. We 
disagree and believe that the thought experiment can 
be fruitful when either or both of these conditions fail 
to hold.

First, when a dependent measure is not on the same 
scale in all the studies, this does not preclude the 
thought experiment. For example, one can still act as 
if one possesses the individual-level data and consider 
what model specifications one might fit were the depen-
dent measure on the same scale across the studies. This 
is likely to move one toward richer and more appropri-
ate summary-data approaches, even if one ultimately 
chooses to adjust for the differences prior to modeling 
(e.g., by converting the data to a standardized scale, 
such as Cohen’s d). Further, the thought experiment 
could lead one to consider how one might adjust for 
these differences within the context of a model for the 
individual-level data (i.e., rather than prior to modeling), 
which in turn might lead one to consider an analogous 
approach that adjusts for these differences within the 
context of a model for the summary data. For instance, 
consider Part III of our case study and suppose that the 
dependent measure had not been on the same scale in 
all the studies; the thought experiment might still move 
one away from applying the common summary-data 
approach to each of the multiple potential effects of 
interest separately and toward approaches that analyze 
them simultaneously (see, e.g., Gleser & Olkin, 1994, 
2009, for an approach that does so by adjusting for the 
differences prior to modeling and McShane & Böcken-
holt, 2018a, for an approach that does so by adjusting 
for the differences within the context of a model).

Second, we argue that our thought experiment can 
prove extremely fruitful when the equivalence between 
the summary-data and individual-level-data approaches 
does not strictly hold. For example, consider a meta-
analysis in which the dependent measure is binary. 
Meta-analysts who possess the individual-level data 
would likely fit some form of a hierarchical generalized 
linear model, such as a hierarchical logistic regression. 
In contrast, meta-analysts who possess summary data 
such as proportions or odds ratios would likely fit some 
form of a hierarchical normal model, as discussed in 
this article. We argue that it would be far preferable to 
seek to mimic the former approach in the context of a 
similarly specified hierarchical normal model insofar as 
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possible, rather than to apply the common summary-
data approach; indeed, doing so would offer many of 
the same benefits demonstrated in this article.

In addition, the thought experiment is likely to make 
it clear that possessing the summary data for a binary 
dependent measure is—at least sometimes—actually 
equivalent to possessing the individual-level data. For 
example, often when one possesses proportions and 
sample sizes, one can multiply them to obtain counts 
and thus re-create the individual-level data. Conse-
quently, in such cases, the thought experiment can lead 
one to move away from the common summary-data 
approach to meta-analysis and toward richer and more 
appropriate individual-level-data approaches even 
when one possesses only summary data.

In conclusion, although it is our hope that our thought 
experiment will lead to increased use of richer and more 
appropriate summary-data approaches to meta-analysis 
when the complexity of the data warrants it, we by no 
means wish to suggest that possessing summary data is 
generally equivalent to or as advantageous as possess-
ing individual-level data. Although they may be equiva-
lent for the purpose of conceptualizing the model 
specification, individual-level data offer numerous 
advantages over summary data. For example, individual-
level data allow for the evaluation of distributional, 
functional-form, and other model-specification assump-
tions; the investigation and imputation of missing data; 
and the analysis of continuous covariates at the indi-
vidual level. Consequently, the analysis of individual-
level data remains the gold standard for meta-analysis.
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