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Hierarchical Bayesian Modeling of Hitting
Performance in Baseball

Shane T. Jensen∗, Blakeley B. McShane† and Abraham J. Wyner‡

Abstract. We have developed a sophisticated statistical model for predicting the
hitting performance of Major League baseball players. The Bayesian paradigm
provides a principled method for balancing past performance with crucial covari-
ates, such as player age and position. We share information across time and across
players by using mixture distributions to control shrinkage for improved accuracy.
We compare the performance of our model to current sabermetric methods on a
held-out season (2006), and discuss both successes and limitations.
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1 Introduction and Motivation

There is substantial public and private interest in the projection of future hitting per-
formance in baseball. Major league baseball teams award large monetary contracts to
top free agent hitters under the assumption that they can reasonably expect that past
success will continue into the future. Of course, there is an expectation that future per-
formance will vary, but for the most part it appears that teams are often quite foolishly
seduced by a fine performance over a single season. There are many questions: How
should past consistency be balanced with advancing age when projecting future hitting
performance? In young players, how many seasons of above-average performance need
to be observed before we consider a player to be a truly exceptional hitter? What is
the effect of a single sub-par year in an otherwise consistent career? We will attempt to
answer these questions through the use of fully parametric statistical models for hitting
performance.

Modeling and prediction of hitting performance is an area of very active research
within the quantitatively-oriented baseball community. Popular current methods in-
clude PECOTA (Silver 2003) and MARCEL (Tango 2004). PECOTA is considered
a ”gold-standard” tool in the sabermetrics community and its predictions are billed
by Baseball Prospectus as being ”deadly accurate”. It is a sophisticated commercial
product managed by a team of statisticians which incorporates proprietary data, minor
league histories, and detailed injury reports. Since PECOTA is proprietary, we cannot
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say exactly what methods they use though we know the general method is based on
matching a player’s past career performance to the careers of a set of comparable ma-
jor league ballplayers. For each player, their set of comparable players is found by a
nearest neighbor analysis of past players (both minor and major league) with similar
performance at the same age. Once a comparison set is found, the future performance
prediction for the player is based on the historical performance of those past comparable
players. Factors such as park effects, league effects and physical attributes of the player
are also taken into account. PECOTA also makes use of substantial manual curation
both to the matching process and to introduce new information as it becomes available.
We have observed that the pre-season PECOTA predictions are adjusted on a daily
basis as news (e.g., injury information, pre-season performance, etc.) is released.

In contrast, our focus is on a model-based approach to prediction of hitting perfor-
mance which is fully-automated and based on publicly available data. Thus, a more
appropriate benchmark for our analysis is MARCEL, a publicly available prediction en-
gine based on the same freely available dataset (Lahman 2006) as our model. MARCEL
is a simple two-stage system for prediction. First, MARCEL takes a weighted average
of the performance of the player over the previous three years, giving more weight to the
most recent seasons. Then, it shrinks this weighted average to the overall league mean
based on the number of plate appearances. Thus, the more data for a given player, the
less shrinkage. Over several seasons, MARCEL has performed well against more elabo-
rate competitors (Tango 2004), but should be outperformed by our principled approach.
Although it is less of a fair benchmark, we will also compare with PECOTA in order
to assess how well our model does against the best available proprietary commercial
product.

In Section 2, we present a Bayesian hierarchical model for the evolution of hitting
performance throughout the careers of individual players. Bayesian or Empirical Bayes
approaches have recently been used to model individual hitting events based on various
within-game covariates (Quintana et al. 2008) and for prediction of within-season per-
formance (Brown 2008). We are addressing a different question: how can we predict the
course of a particular hitter’s career based on the seasons of information we have ob-
served thus far? Our model includes several covariates that are crucial for the accurate
prediction of hitting for a particular player in a given year. A player’s age and home
ballpark certainly has an influence on their hitting; we will include this information
among the covariates in our model. We will also include player position in our model,
since we believe that position is an important proxy for hitting performance (e.g., second
basemen have a generally lower propensity for home runs than first basemen). Finally,
our model will factor past performance of each player into future predictions. In Sec-
tion 3, we test our predictions against a hold out data set, and compare our performance
with several competing methods. A major advantage of our model-based approach is
the ability to move beyond the point predictions offered by other engines to the incor-
poration of variability via calibrated predictive intervals. We examine our results not
only in terms of accuracy of our point predictions, but also the quality the prediction
intervals produced by our model. We also investigate several other interesting aspects
of our model in Section 3 and then conclude with a brief discussion in Section 4.
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2 Model and Implementation

Our data comes from the publicly-available Lahman Baseball Database (Lahman 2006),
which contains hitting totals for each major league baseball player from 1871 to the
present day, though we will fit our model using only seasons from 1990 to 2005. In
total, we have 10280 player-years of of information from major league baseball between
1990 and 2005 that will be used for model estimation. Within each season j, we will
use the following data for each player i:

1. Home Run Total : Yij

2. At Bat Total : Mij

3. Age : Aij

4. Home Ballpark : Bij

5. Position : Rij

As an example, Barry Bonds in 2001 had Yij = 73 home runs out of Mij = 476 at bats.
We excluded pitchers from our model, leaving us with nine positions: first basemen
(1B), second basemen (2B), third basemen (3B), shortstop (SS), left fielder (LF), center
fielder (CF), right fielder (RF), catcher (C), and the designated hitter (DH). There
were 46 different home ballparks used in major league baseball between 1990 and 2005.
Player ages ranged between 20 and 49, though the vast majority of player ages were
between 23 and 44.

2.1 Hierarchical Model for Hitting

Our outcome of interest for a given player i in a given year (season) j is their home run
total Yij , which we model as a Binomial variable:

Yij ∼ Binomial(Mij , θij) (1)

where θij is a player- and year-specific home run rate, and Mij are the number of
opportunities (at bats) for player i in year j. Note that by using at-bats as our number
of opportunities, we are excluding outcomes such as walks, sacrifice flies and hit-by-
pitches. We will assume that the number of opportunities Mij are fixed and known
so we focus our efforts on modeling each home run rate θij . The i.i.d. assumption
underlying the binomial model has already been justified for hitting totals within a
single season (Brown 2008), and so seems reasonable for hitting totals across an entire
season.

We next model each unobserved player-year rate θij as a function of home ballpark
b = Bij , position k = Rij and age Aij of player i in year j.

log
(

θij

1− θij

)
= αk + βb + fk(Aij) (2)
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The parameter vector ααα = (α1, . . . , α9) are the position-specific intercepts for each of
the nine player positions. The function fk(Aij) is a smooth trajectory of Aij , that
is different for each position k. We allow a flexible model for fk(·) by using a cubic
B-spline (de Boor 1978) with different spline coefficients γγγ estimated for each position.
The age trajectory component of this model involves the estimation of 36 parameters:
four B-spline coefficients per position × nine different positions.

We call the parameter vector β the “team effects” since these parameters are shared
by all players with the same team and home ballpark. However, these coefficients β
can not be interpreted as a true “ballpark effect” since they are confounded with the
effect of the team playing in that ballpark. If a particular team contains many home
run hitters, then that can influence the effect of their home ballpark. Separating the
effect of team versus the effect of ballpark would require examining hitting data at the
game level instead of the seasonal level we are using for our current model.

There are two additional aspects of hitting performance that are not captured by the
model outlined in (1)-(2). Firstly, conditional on the covariates age, position, and ball-
park, our model treats the home run rate θij as independent and identically-distributed
across players i and years j. However, we suspect that not all hitters are created equal:
we posit that there exists a sub-group of elite home run hitters within each position that
share a higher mean home run rate. We can represent this belief by placing a mixture
model on the intercept term αk dictated by a latent variable Eij in each player-year. In
other words,

αk =
{

αk0 if Eij = 0
αk1 if Eij = 1

where we force αk0 < αk1 for each position k. We call the latent variable Eij the elite
status for player i in year j. Players with elite status are modeled as having the same
shape to their age trajectory, but with an extra additive term (on the log-odds scale)
that increases their home run rate. However, we have a different elite indicator Eij

for each player-year, which means that a particular player i can move in and out of
elite status during the course of his career. Thus, the elite sub-group is maintained in
the player population throughout time even though this sub-group will not contain the
exact same players from year to year.

The second aspect of hitting performance that needs to be addressed is that the
past performance of a particular player should contain information about his future
performance. One option would be to use player-specific intercepts in the model to allow
each player to have a different trajectory. However, this model choice would involve a
large number of parameters, even if these player-specific intercepts were assumed to
share a common prior distribution. In addition, many of these intercepts would be
subject to over-fitting due to small number of observed years of data for many players.
We instead favor an approach that involves fewer parameters (to prevent over-fitting)
while still allowing different histories for individual players. We accomplish this goal by
building the past performance of each player into our model through a hidden Markov
model on the elite status indicators Eij for each player i. Specifically, our probability
model of the elite status indicator for player i in year j + 1 is allowed to depend on the
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Figure 1: Hidden Markov Model for Elite Status

elite status indicator for player i in year j:

p(Ei,j+1 = b|Eij = a,Rij = k) = νabk a, b ∈ {0, 1} (3)

where Eij is the elite status indicator and Rij is the position of player i in year j. This
relationship is also graphically represented in Figure 1. The Markovian assumption
induces a dependence structure on the home run rates θi,j over time for each player
i. Players that show elite performance up until year j are more likely to be predicted
as elite at year j + 1. The transition parameters νννk = (ν00k, ν01k, ν10k, ν11k) for each
position k = 1, . . . , 9 are shared across players at their position, but can differ between
positions, which allows for a different proportion of elite players in each position. We
initialize each player’s Markov chain by setting Ei0 = 0 for all i, meaning that each player
starts their career in non-elite status. This initialization has the desired consequence
that young players must show consistently elite performance in multiple years in order
to have a high probability of moving to the elite group.

In order to take a fully Bayesian approach to this problem, we must specify prior
distributions for all of our unknown parameters. The forty-eight different ballpark
coefficients β in our model all share a common Normal distribution,

βl ∼ Normal(0, τ2) ∀ l = 1, . . . , 48 (4)

The spline coefficients γγγ needed for the modeling of our age trajectories also share a
common Normal distribution,

γkl ∼ Normal(0, τ2) ∀ k = 1, . . . , 9, l = 1, . . . , L (5)

where L is the number of spline coefficients needed in the modeling of age trajectories
for f(Aij , Rij) for each position. In our latent mixture model, we also have two inter-
cept coefficients for each position, αααk = (αk0, αk1), which share a truncated Normal
distribution,

αααk ∼ MVNormal(000, τ2III2) · Ind(αk0 < αk1) ∀ k = 1, . . . , 9 (6)
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where 000 is the 2× 1 vector of zeros and III2 is the 2× 2 identity matrix. This bivariate
distribution is truncated by the indicator function Ind(·) to ensure that αk0 < αk1

for each position k. We make each of the prior distributions (4)-(6) non-informative
by setting the variance hyperparameter τ2 to a very large value (10000 in this study).
Finally, for the position-specific transition parameters of our elite status ννν, we use flat
Dirichlet prior distributions,

(ν00k, ν01k) ∼ Dirichlet(ω, ω) ∀ k = 1, . . . , 9,

(ν10k, ν11k) ∼ Dirichlet(ω, ω) ∀ k = 1, . . . , 9. (7)

These prior distributions are made non-informative by setting ω to a small value (ω = 1
in this study). We also examined other values for ω and found that using different
values had no influence on our posterior inference, which is to be expected considering
the dominance of the data in equation (9). Combining these prior distributions together
with equations (1)-(3) give us the full posterior distribution of our unknown parameters,

p(ααα, β, γγγ,ννν,EEE|XXX) ∝
∏

i,j

p(Yij |Mij , θij) · p(θij |Rij , Aij , Bij , Eij ,ααα, β, γγγ)

·p(Eij |Ei,j−1, ννν) · p(ααα, β, γγγ,ννν). (8)

where we use XXX to denote our entire set of observed data YYY and covariates (AAA,BBB,MMM,RRR).

2.2 MCMC Implementation

We estimate our posterior distribution (8) by a Gibbs sampling strategy (Geman and
Geman 1984). We iteratively sample from the following conditional distributions of each
set of parameters given the current values of the other parameters:

1. p(ααα|β, γγγ,ννν,EEE,XXX) = p(ααα|β, γγγ,EEE,XXX)

2. p(β|ααα,γγγ,ννν,EEE,XXX) = p(β|ααα,γγγ,EEE,XXX)

3. p(γγγ|β,ααα,ννν,EEE,XXX) = p(γγγ|β,ααα,EEE,XXX)

4. p(ννν|β, γγγ,ααα,EEE,XXX) = p(ννν|EEE)

5. p(EEE|β, γγγ,ννν,EEE,XXX)

where again XXX denotes our entire set of observed data YYY and covariates (AAA,BBB,MMM,RRR).
Combined together, steps 1-3 of the Gibbs sampler represent the usual estimation of
regression coefficients (ααα, β, γγγ) in a Bayesian logistic regression model. The conditional
posterior distributions for these coefficients are complicated and we employ the common
strategy of using the Metropolis-Hastings algorithm to sample each coefficient (see, e.g.
Gelman et al. (2003)). The proposal distribution for a particular coefficient is a Nor-
mal distribution centered at the maximum likelihood estimate of that coefficient. The
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variance of this Normal proposal distribution is a tuning parameter that was adaptively
adjusted to provide a reasonable rejection/acceptance ratio (Gelman et al. 1996). Step
4 of the Gibbs sampler involves standard distributions for our transition parameters
νννk = (ν00k, ν01k, ν10k, ν11k) for each position k = 1, . . . , 9. The conditional posterior
distributions for our transition parameters implied by (8) are

(ν00k, ν01k)|EEE ∼ Dirichlet (N00k + ω, N01k + ω)
(ν11k, ν10k)|EEE ∼ Dirichlet (N11k + ω, N10k + ω) (9)

where Nabk =
∑
i

ni∑
t=1

I(Ei,t = a,Ei,t+1 = b) over all players i in position k and where

ni represents the number of years of observed data for player i’s career. Finally, step
5 of our Gibbs sampler involves sampling the elite status Eij for each year j of player
i, which can be done using the “Forward-summing Backward-sampling” algorithm for
hidden Markov models (Chib 1996). For a particular player i, this algorithm “forward-
sums” by recursively calculating

p(Eit|XXXi,t,ΘΘΘ) ∝ p(Xi,t|Eit,ΘΘΘ) · p(Eit|XXXi,t−1,ΘΘΘ)

∝ p(Xi,t|Eit,ΘΘΘ)
1∑

e=0

p(Eit|Ei,t−1 = e,ΘΘΘ) p(Ei,t−1 = e|XXXi,t−1,ΘΘΘ) (10)

for all t = 1, . . . , ni where XXXi,k represents the observed data for player i up until year
k, Xi,k represents only the observed data for player i in year k, and ΘΘΘ represents all
other parameters. The algorithm then ”backward-samples” by sampling the terminal
elite state Ei,ni from the distribution p(Ei,ni |XXXi,ni ,Θ) and then sampling Ei,t−1|Ei,t for
t = ni back to t = 1. Repeating this algorithm for each player i gives us a complete
sample of our elite statuses EEE. We ran multiple chains from different starting values
to evaluate convergence of our Gibbs sampler. Our results are based on several chains
where the first 1000 iterations were discarded as burn-in. Our chains were also thinned,
taking only every eighth iteration, in order to eliminate autocorrelation.

2.3 Model Extension: Player-Specific Transition Parameters

In Section 2.1, we introduced a hidden Markov model that allows the past performance
of each player to influence predictions for future performance. If we infer player i to
have been elite in year t (Ei,t = 1), then this inference influences the elite status of
that player in his next year, Ei,t+1 through the transition parameters νννk. However, one
potential limitation of these transition parameters νννk is that they are shared globally
across all players at that position: each player at position k has the same probability
of transitioning from elite to non-elite and vice versa. This model assumption allows
us to pool information across players for the estimation of our transition parameters
in (9), but may lead to loss of information if players are truly heterogeneous with
respect to the probability of transitioning between elite and non-elite states. In order
to address this possibility, we consider extending our model to allow player-specific
transition parameters in our hidden Markov model.
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Our proposed extension, which we call the PSHMM, has player-specific transition
parameters νννi = (νi

00, ν
i
01, ν

i
10, ν

i
11) for each player i, that share a common prior distri-

bution,

(νi
00, ν

i
01) ∼ Dirichlet (ω00k , ω01k)

(νi
11, ν

i
10) ∼ Dirichlet (ω11k , ω10k) (11)

where k is the position of player i. Global parameters ωωωk = (ω00k, ω01k, ω11k, ω10k)
are now allowed to vary with flat prior distributions. This new hierarchical structure
allows for transition probabilities νννi to vary between players, but still imposes some
shrinkage towards a common distribution controlled by global parameters ωωωk that are
shared across players with position k. Under this model extension, the new conditional
posterior distribution for each νννi is

(νi
00, ν

i
01)|EEE ∼ Dirichlet

(
Ni

00 + ω00k , Ni
01 + ω01k

)

(νi
11, ν

i
10)|EEE ∼ Dirichlet

(
Ni

11 + ω11k , Ni
10 + ω10k

)
(12)

where Ni
ab =

ni−1∑
t=1

I(Ei,t = a, Ei,t+1 = b).

To implement this extended model, we must replace step 4 in our Gibbs sampler
with a step where we draw νννi from (12) for each player i. We must also insert a new
step in our Gibbs sampler where we sample the global parameters ωωωk given our sampled
values of all the νννi values for players at position k. This added step requires sampling
(ω00k, ω01k) from the following conditional distribution:

p(ω00k, ω01k|ννν) ∝
[

Γ(ω00k + ω01k)
Γ(ω00k)Γ(ω01k)

]nk

×
[

nk∏

i=1

νi
00

]ω00k−1

×
[

nk∏

i=1

νi
01

]ω01k−1

(13)

where each product is only over players i at position k and nk is the number of players
at position k. We accomplish this sampling by using a Metropolis-Hastings step with
true distribution (13) and Normal proposal distributions: ωprop

00k ∼ N(ω̂00k, σ2) and
ωprop

01k ∼ N(ω̂01k, σ2). The means of these proposal distributions are:

ω̂00k = ν00k

(
ν00k(1− ν00k)

s2
0k

− 1
)

and ω̂01k = (1− ν00k)
(

ν00k(1− ν00k)
s2
0k

− 1
)

(14)

with

ν00k =
nk∑

i=1

νi
00 / nk and s2

0k =
nk∑

i=1

(νi
00 − ν00k)2 / nk

where each sum is over all players i at position k and nk is the number of players at po-
sition k. These estimates ω̂00k and ω̂01k were calculated by equating the sample mean
ν00k and sample variance s2

0k with the mean and variance of the Dirichlet distribu-
tion (13). Similarly, we sample (ω11k, ω10k) with the same procedure but with obvious
substitutions.
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3 Results and Model Comparison

Our primary interest is the prediction of future hitting events, Y ?
t+j for years j = 1, 2, . . .

based on our model and observed data up to year t. We estimate the full posterior
distribution (8) and then use this posterior distribution to predict home run totals
Y ?

i,2006 for each player i in the 2006 season. The 2006 season serves as an external
validation of our method, since this season is not included in our model fit. We use our
predicted home run totals YYY ?

2006 for the 2006 season to compare our performance to
several previous methods (Section 3.2) as well as evaluate several internal model choices
(Section 3.1). In Section 3.3, we present inference for other parameters of interest from
our model, such as the position-specific age curves.

3.1 Prediction of 2006 Home Run Totals: Internal Comparisons

We can use our posterior distribution (8) based on data from MLB seasons up to 2005
to calculate the predictive distribution of the 2006 hitting rate θi,2006 for each player i.

p(θi,2006|XXX) =
∫

p(θi,2006|Ri,2006, Ai,2006, Bi,2006, Ei,2006,ααα, β, γγγ)

·p(Ei,2006|EEEi, ννν)p(ααα, β, γγγ,ννν,EEEi|XXX) dααα dβ dγγγ dννν dEEE (15)

where XXX represents all observed data up to 2005. This integral is estimated using the
sampled values from our posterior distribution p(ααα, β, γγγ,ννν,EEEi|XXX) that were generated
via our Gibbs sampling strategy.

We can use the posterior predictive distribution (15) of each 2006 home run rate
θi,2006 to calculate the distribution of the home run total Y ?

i,2006 for each player in the
2006 season.

p(Y ?
i,2006|XXX) =

∫
p(Y ?

i,2006|Mi,2006, θi,2006) · p(θi,2006|XXX) dθi,2006 (16)

However, the issue with prediction of home run totals is that we must also consider the
number of opportunities Mi,2006. Since our overall focus has been on modeling home run
rates θi,2006, we will use the true value of Mi,2006 for the 2006 season in equation (16).
Using the true value of each Mi,2006 gives a fair comparison of the rate predictions θi,2006

for each model choice, since it is a constant scaling factor. This is not a particularly
realistic scenario in a prediction setting since the actual number of opportunities will
not be known ahead of time.

Based on the predictive distribution p(Y ?
i,2006|XXX), we can report either a predictive

mean E(Y ?
i,2006|XXX) or a predictive interval C?

i such that p(Y ?
i,2006 ∈ C?

i |XXX) ≥ 0.80. We
can examine the accuracy of our model predictions by comparing to the observed home
run totals Yi,2006 for the 559 players in the 2006 season, which we did not include in our
model fit. We use the following three comparison metrics:
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1. RMSE: root mean square error of predictive means,

RMSE =

√
1
n

∑

i

(E(Y ?
i,2006|XXX)− Yi,2006)2

2. Interval Coverage: fraction of 80% predictive intervals C?
i covering observed

Yi,2006

3. Interval Width: average width of 80% predictive intervals C?
i

In Table 1, we evaluate our full model outlined in Section 2.1 relative to several
simpler modeling choices. Specifically, we examine a simpler version of our model with-
out positional information or the mixture model on the α coefficients. We see from
Table 1 that our full model gives proper coverage and a substantially lower RMSE than
the version of our model without positional information or the elite/non-elite mixture
model. We also examine a truly simplistic strawman, which is to take last years home
run totals as the prediction for this years home run totals (ie. Y ?

i,2006 = Yi,2005). Since
this strawman is only a point estimate, that comparison is made based solely on the
RMSE. As expected, the relative performance of this strawman model is terrible, with
a substantially higher RMSE compared to our full model. Of course, this simple straw-
man alternative is rather naive and in Section 3.2, we compare our performance to more
sophisticated external prediction approaches.

Table 1: Internal Comparison of Different Model Choices. Measures are calculated over 559
Players from 2006 season.

Coverage Average
Model RMSE of 80% Interval

Intervals Width
Full Model 5.30 0.855 9.81
No Position or Elite Indicators 6.87 0.644 6.56
Strawman: Y ?

i,2006 = Yi,2005 8.24 NA NA
Player-Specific Transitions 5.45 0.871 10.36

We also considered an extended model in Section 2.3 with player-specific transition
parameters for the hidden Markov model on elite status, and the validation results from
this model are also given in Table 1. Our motivation for this extension was that allowing
player-specific transition parameters might reduce the interval width for players that
have displayed consistent past performance. However, we see that the overall prediction
accuracy was not improved with this model extension, suggesting that there is not
enough additional information in the personal history of most players to noticeably
improve the model predictions. Somewhat surprisingly, we also see that the width of
our 80% predictive intervals are not actually reduced in this extended model. The
reason is that, even for players with long careers of data, the player-specific transition
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parameters νννi fit by this extended model are not extreme enough to force all sampled
elite indicators Ei,2006 to be either 0 or 1, and so the predictive interval is still wide
enough to include both possibilities.

3.2 Prediction of 2006 Home Run Totals: External Comparisons

Similarly to Section 3.1, we use hold-out home run data for the 2006 season to eval-
uate our model predictions compared to the predictions from two external methods,
PECOTA (Silver 2003) and MARCEL (Tango 2004), both described in Section 1. We
view MARCEL as the primary competitor of our approach, as it also is a fully-automated
method based on publicly available data. However, out of general interest we also com-
pare our prediction accuracy to the proprietary and manually-curated PECOTA system.
For a reasonable comparison set, we focus our external validation on hitters with an
empirical home run rate of least 1 home run every 40 at-bats in at least one season up
to 2005 (minimum of 300 at-bats in that season). This restriction reduces our dataset
for model fitting down to 118 top home run hitters who all have predictions from the
competing methods PECOTA and MARCEL. As noted above, our predicted home run
totals for 2006 are based on the true number of at bats for 2006. In order to have a
fair comparison to external methods such as PECOTA or MARCEL, we also scale the
predictions from these methods by the true number of at bats in 2006.

Our approach has the advantage of producing the full predictive distribution of
future observations (summarized by our predictive intervals). However, the external
methods do not produce comparable intervals, so we only compare to other approaches
in terms of prediction accuracy. We expand our set of accuracy measures to include not
only the root mean square error (RMSE), but also the median absolute error (MAE).
In addition to comparing the predictions from each method using overall error rates, we
also calculated “% BEST” which is, for each method, the percentage of players for which
the predicted home run total Y ?

i,2006 is the closest to the true home run total among
all methods. Each of these comparison statistics are given in Table 2. In addition to
giving these validation measures for all 118 players, we also separate our comparison for
young players (age ≤ 26 years in 2006) versus older players (age > 26 years in 2006).
The age cut-off of 26 years was used in order to isolate the small subset of players that
were just beginning their careers and for which each player had little personal history of
performance. It is worth noting that only 8 out of the 118 players (around 7%) in our
2006 test dataset were classified as young by this criterion, so the vast majority (110
out of 118) of players are in the “older” category.

We see from Table 2, that our model is extremely competitive with the external
methods PECOTA and MARCEL. When examining all 118 players, our model has the
smallest median absolute error and the highest “% Best” measure, suggesting that our
predictions are superior on these absolute scales. Our performance is more striking when
we examine only the small subset of young players in our dataset. We have the best
prediction on 62% of all young players, and for these young players, both the RMSE and
MAE from our method is substantially lower than either PECOTA or MARCEL. We
credit this superior performance to our sophisticated hierarchical approach that builds in
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Table 2: Comparison of our model to two external methods on the 2006 predictions of 118
top home run hitters. We also provide this comparison for only young players (age ≤ 26 years)
versus only older players (age > 26 years).

Method All Players Young Players Older Players
RMSE MAE % BEST RMSE MAE % BEST RMSE MAE % BEST

Our Model 7.33 4.40 41 % 2.62 1.93 62% 7.56 4.48 39%
PECOTA 7.11 4.68 28 % 4.62 3.44 0% 7.26 4.79 30%
MARCEL 7.82 4.41 31 % 4.15 2.17 38% 8.02 4.57 31%

information via position instead of relying solely on limited past personal performance.
All eight young players had played three seasons or less before 2006, and six of the
eight players had two seasons or less before 2006. For these players, very little past
information is available about their performance and so the model must rely heavily on
position, where information is shared between players.

However, our method is not completely dominant: we have a larger root mean square
error than PECOTA for older players (and overall), which suggests that our model might
be making large errors on a small number of players. Further investigation shows that
our model commits its largest errors for players in the designated hitter (DH) position.
This is somewhat expected, since our model seems to perform best for young players and
DH is a position almost always occupied by an older player. Beyond this, the model
appears to be over-shrinking predictions for players in the DH role, perhaps because
this player position is rather unique and does not fit our model assumptions as well
as the other positions. Also, PECOTA is a manually-curated system that can account
for the latest information in terms of injuries and playing time adjustments, which
can greatly benefit their predictions. Overall, the validation results are generally very
encouraging for our approach compared to our nearest competitor, MARCEL, as well as
the proprietary system PECOTA. Our performance is especially good among younger
players where a principled balance of positional information with past performance is
most advantageous.

We further investigate our model dynamics among young players by examining how
many years of observed performance are needed to decide that a player is an elite home
run hitter. This question was posited in Section 1 and we now address the question using
our elite status indicators Eij . Taking all 559 available players examined in Section 3.1,
we focus our attention on the subset of players that were determined by our model to be
in the elite group (P(Eij = 1) ≥ 0.5) for at least two years in their career. For each elite
home run hitter, we tabulate the number of years of observed data that were needed
before they were declared elite. The distribution of the number of years needed is given
in Figure 2. We see that although some players are determined to be elite based on
just one year of observed data, most players (74%) need more than one year of observed
performance to determine that they are elite home run hitters. In fact, almost half
of players (46%) need more than two years of observed performance to determine that
they are elite home run hitters.
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Figure 2: Distribution of number of seasons of observed data needed to infer elite status
(P(Eij = 1) ≥ 0.5) among all players determined by our model to be elite during their career.
Note that increasing the cut-off for elite states (e.g. P(Eij = 1) ≥ 0.75) shifts the distribution
towards a higher number of seasons needed, whereas decreasing the cut-off for elite states (e.g.
P(Eij = 1) ≥ 0.25) shifts the distribution towards a lower number of seasons needed.
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We also investigated our model dynamics among older players by examining the
balancing of past consistency with advancing age, which was also posited as a question
in Section 1. Specifically, for the older players (age ≥ 35) in our dataset, we examined
the differences between the 2006 home run rate predictions θ̂i,2006 = E(θi,2006|XXX) from
our model versus the naive prediction based entirely on the previous year θ̃i,2006 =
Yi,2005/Mi,2005. Is our model contribution for a player (which we define as the difference
between our model prediction θ̂i,2006 and the naive prediction θ̃i,2006) more a function
of advancing age or past consistency of that player? Both age and past consistency
(measured as the standard deviation of their past home run rates) were found to be
equally good predictors of our model contribution, which suggests that both sources of
information are being evenly balanced in the predictions produced by our model.
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3.3 Age Trajectory Curves

In addition to validating our model in terms of prediction accuracy, we can also examine
the age trajectory curves that are implied by our estimated posterior distribution (8).
We will examine these curves on the scale of the home run rate θij which is a function
of age Aij , ball-park b, and elite status Eij for player i in year j (with position k):

θij =
exp [(1− Eij) · αk0 + Eij · αk1 + βb + fk(Aij)]

1 + exp [(1− Eij) · αk0 + Eij · αk1 + βb + fk(Aij)]
. (17)

The shape of these curves can differ by position k, ballpark b and also can differ between
elite and non-elite status as a consequence of having a different additive effect αk0 vs.
αk1. In Figure 3, we compare the age trajectories for two positions, DH and SS, for
both elite player-years (Eij = 1) vs. non-elite player-years (Eij = 0) for an arbitrary
ballpark. Each graph contains multiple curves (100 in each graph), each of which is the
curve implied by the sampled values (ααα,γγγ) from a single iteration of our converged and
thinned Gibbs sampling output. Examining the curves from multiple samples gives us
an indication of the variability in each curve.

We see a tremendous difference between the two positions DH and SS in terms of
the magnitude and shape of their age trajectory curves. This is not surprising, since
home run hitting ability is known to be quite different between designated hitters and
shortstops. In fact, DH and SS were chosen specifically to illustrate the variability
between position with regards to home run hitting. For the DH position, we also see
that elite vs. non-elite status show a substantial difference in the magnitude of the
home run rate, though the overall shape across age is restricted to be the same by the
fact that players of both statuses share the same fk(Aij) in equation (17). There is
less difference between elite and non-elite status for shortstops, in part due to the lower
range of values for shortstops overall. Not surprisingly, the variability in the curves
grows with the magnitude of the home run rate.

We also perform a comparison across all positions by examining the elite vs. non-
elite intercepts (ααα0,ααα1) that were allowed to vary by position. We present the posterior
distribution of each elite and non-elite intercept in Figure 4. For easier interpretation,
the values of each αk0 and αk1 have been transformed into the implied home run rate θij

for very young (age = 23) players in our dataset. We see in Figure 4 that the variability is
higher for the elite intercept in each position, and there is even more variability between
positions. The ordering of the positions is not surprising: the corner outfielders and
infielders have much higher home run rates than the middle infielder and centerfielder
positions.

For a player at a specific position, such as DH, our predictions of his home run
rate for a future season is a weighted mixture of elite and non-elite DH curves given
in Figure 3. The amount of weight given to elite vs. non-elite for a given player will
be determined by the full posterior distribution (8) as a function of that player’s past
performance. We illustrate this characteristic of our model in more detail in Figure 5
by examining six different hypothetical scenarios for players at the 2B position. Each
plot in Figure 5 gives several seasons of past performance for a single player, as well
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Figure 3: Age Trajectories fk(·) for two positions and elite vs. non-elite status. X-axis is
age and Y-axis is Rate = θij
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Figure 4: Distribution of the elite vs. non-elite intercepts (ααα0,ααα1) for each position. The
distributions of each (ααα0,ααα1) are presented in terms of the home run rate θij for very young
(age = 23) players. The posterior mean is given as a black dot, and the 95% posterior interval
as a black line.
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as predictions for an additional season (age 30). Predictions are given both in terms
of posterior draws of the home run rate as well as the posterior mean of the home run
rate. The elite and non-elite age trajectories for the 2B position are also given in each
plot. We focus first on the left column of plots, which shows hypothetical players with
consistently high (top row), average (middle row), and poor (bottom row) past home
run rates. We see in each of these left-hand plots that our posterior draws (gray dots) for
the next season are a mixture of posterior samples from the elite and non-elite curves,
though each case has a different proportion of elite vs. non-elite, as indicated by the
posterior mean of those draws (black ×).

Now, what would happen if each of these players was not so consistent? In Section 1,
we asked about the effect of a single sub-par year on our model predictions. The plots in
the right column show the same three hypothetical players, but with their most recent
past season replaced by a season with distinctly different (and relatively poor) home
run hitting performance. We see from the resulting posterior means in each case that
only the average player (middle row) has his predictions substantially affected by the
one season of relatively poor performance. Despite the one year of poor performance,
the player in the top row of Figure 5 is still considered to be elite in the vast majority
of posterior draws. Similarly, the player in the bottom row of Figure 5 is going to be
considered non-elite regardless of that one year of extra poor performance. The one
season of poor performance has the most influence on the player in the middle row,
since the model has the most uncertainty with regards to the elite vs. non-elite status
of this average player.

4 Discussion

We have presented a sophisticated Bayesian hierarchical model for home run hitting
among major league baseball players. Our principled approach builds upon information
about past performance, age, position, and home ballpark to estimate the underlying
home run hitting ability of individual players, while sharing information across players.
Our primary outcome of interest is the prediction of future home run hitting, which we
evaluated on a held out season of data (2006). When compared to the previous meth-
ods, PECOTA (Silver 2003) and MARCEL (Tango 2004), we perform well in terms of
prediction accuracy, especially our “% BEST” measure which tabulates the percent-
age of players for which our predictions are the closest to the truth. Our prediction
accuracy completely dominates the MARCEL procedure which represents our closest
natural competitor, since it is also a fully-automated and based on publicly-available
data. Our prediction accuracy is also competitive with the proprietary PECOTA system
which is especially impressive given that PECOTA is manually curated based on the
latest information about injuries and playing time. Our approach does especially well
among young players, where a principled balance of positional information with past
performance seems most helpful. In addition, our method has the advantage of estimat-
ing the full posterior predictive distribution of each player, which provides additional
information in the form of posterior intervals. Beyond our primary goal of prediction,
our model-based approach also allows us to answer interesting supplemental questions
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Figure 5: Six different hypothetical scenarios for a player at the 2B position. Black curves
indicate the elite and non-elite age trajectories for the 2B position. Black points represent
several seasons of past performance for a single player. Predictions for an additional season
are given as posterior draws (gray points) of the home run rate and the posterior mean of the
home run rate (black ×). Left column of plots gives hypothetical players with consistently high
(top row), average (middle row), and poor (bottom row) past home run rates. Right column
of plots show the same hypothetical players, but with their most recent past season replaced
by a relatively poor home run hitting performance.
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such as the ones posed in Section 1.

We have illustrated our methodology using home runs as the hitting event since
they are a familiar outcome that most readers can calibrate with their own anecdotal
experience. However, our approach could easily be adapted to other hitting outcomes of
interest, such as on-base percentage (rate of hits or walks) which has become a popular
tool for evaluating overall hitting quality. Also, although our procedure is presented in
the context of predicting a single hitting event, we can also extend our methodology
in order to model multiple hitting outcomes simultaneously. In this more general case,
there are several possible outcomes of an at-bat (out, single, double, etc.). Our units
of observation for a given player i in a given year j is now a vector of outcome totals
YYY ij , which can be modeled as a multinomial outcome: YYY ij ∼ Multinomial(Mij , θθθij)
where Mij are the number of opportunities (at bats) for player i in year j and θθθij is the
vector of player- and year-specific rates for each outcome. Our underlying model for the
rates θij as a function of position, ball-park and past performance could be extended
to a vector of rates θθθij . Our preliminary experience with this type of multinomial
model indicates that single-event predictions (such as home runs) are not improved
by considering multiple outcomes simultaneously, though one could argue that a more
honest assessment of the variance in each event would result from acknowledging the
possibility of multiple events from each at-bat.

An important element of our approach was the use of mixture modeling of the player
population to further refine our estimated home run rates. Sophisticated statistical
models have been used previously to model the careers of baseball hitters (Berry et al.
1999), but these approaches have not employed mixtures for the modeling of the player
population. Our internal model comparisons suggest that this mixture model component
is crucial for the accuracy of our model, dominating even information about player
position. Using a mixture of elite and non-elite players limits the shrinkage towards
the population mean of consistently elite home run hitters, leading to more accurate
predictions. Our fully Bayesian approach also allows us to investigate the dynamics of
our elite status indicators directly, as we do in Section 3.2.

In addition to our primary goal of home run prediction, our model also estimates
several secondary parameters of interest. We estimate career trajectories for both elite
and non-elite players within each position. In addition to evaluating the dramatic dif-
ferences between positions in terms of home run trajectories, our fully Bayesian model
also has the advantage of estimating the variability in these trajectories, as can be seen
in Figure 3. It is worth noting that our age trajectories do not really represent the
typical major league baseball career, especially at the higher values of age. More accu-
rately, our trajectories represent the typical career conditional on the player staying in
baseball, which is one reason why we do not see dramatic dropoff in Figure 3. Since our
primary goal is prediction, the fact that our trajectories are conditional is acceptable,
since one would presumably only be interested in prediction for baseball players that
are still in the major leagues. However, if one were more interested in estimating un-
conditional trajectories, then a more sophisticated modeling of the drop-out/censoring
process would be needed.
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Our focus in this paper has been the modeling of home run rates θij and so we have
made an assumption throughout our analysis that the number of plate appearances,
or opportunities, for each player is a known quantity. This is a reasonable assumption
when retrospectively estimating past performance, but when predicting future hitting
performance the number of future opportunities is not known. In order to maintain a fair
comparison between our method and previous approaches for prediction of future totals,
we have used the future number of opportunities, which is not a reasonable strategy
for real prediction. A focus of future research is to adapt our sophisticated hierarchical
approach to the modeling and prediction of plate appearances Mij in addition to our
current modeling of hitting rates θij .
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