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Abstract
The basic random effects meta-analytic model is overwhelmingly dominant in psychological research. Indeed, it is typically 
employed even when more complex multilevel multivariate meta-analytic models are warranted. In this paper, we aim to 
help overcome challenges so that multilevel multivariate meta-analytic models will be more often employed in practice. We 
do so by introducing MLMVmeta—an easy-to-use web application that implements multilevel multivariate meta-analytic 
methodology that is both specially tailored to contemporary psychological research and easily estimable, interpretable, 
and parsimonious—and illustrating it across three case studies. The three case studies demonstrate the more accurate and 
extensive results that can be obtained via multilevel multivariate meta-analytic models. Further, they sequentially build in 
complexity featuring increasing numbers of experimental factors and conditions, dependent variables, and levels; this in turn 
necessitates increasingly complex model specifications that also sequentially build upon one another.
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Introduction

The basic random effects meta-analytic model is overwhelm-
ingly dominant in psychological research. However, this uni-
variate, two-level model is suitable only when studies are 
independent and adequately summarized by a single statis-
tic. This is seldom the case in contemporary psychological 
research, and when it is not, the model can be problematic 
and more accurate and extensive results can be obtained via 
multilevel multivariate meta-analytic models.

Nonetheless, the basic random effects meta-analytic 
model is still typically employed even when these more com-
plex models are warranted (Tipton, Pustejovsky, & Ahmadi, 
2019; McShane & Böckenholt, 2020). This is perhaps curi-
ous as multilevel multivariate meta-analytic models are by 
no means new. Indeed, they were introduced and applied 
in noted research articles (Kalaian & Raudenbush, 1996; 
Berkey, Hoaglin, Antczak-Bouckoms, Mosteller, & Colditz, 

1998) and have been covered in classic textbooks (Rauden-
bush & Bryk, 2002; Cheung, 2015) and handbooks (Becker, 
2000; Cooper, Hedges, & Valentine J.C., 2019; Schmid, Sti-
jnen, & White, 2020).

One reason multilevel multivariate meta-analytic models 
may not often be employed in practice is that they can be 
considerably more difficult to implement as compared to the 
basic random effects meta-analytic model.

A second reason may be that standard multilevel multi-
variate meta-analytic models are not fully suited to contem-
porary psychological research in which studies in a given 
domain can vary considerably in terms of their experimental 
factors and dependent variables; examine multiple condi-
tions that result from the manipulation of those experimental 
factors and give rise to multiple dependent effects of interest 
(e.g., simple effects, main effects, and interaction effects); 
employ a mix of study designs (e.g., unmoderated versus 
moderated, between-subjects versus within-subjects, univar-
iate versus multivariate); and vary with respect to their oper-
ationalizations of the experimental factors and dependent 
variables, social contexts, and other method factors. Further, 
papers can feature multiple studies that, while different, are 
quite similar—particularly in comparison to studies featured 
in other papers. Such studies require careful treatment in 
meta-analysis so that the variation and covariation induced 
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by the facts that observations differ in their experimental fac-
tors and dependent variables and are nested (e.g., individual-
level data within experimental conditions within groups of 
subjects within studies within papers) are accounted for.

A third reason may be that the number of observations is 
typically not large in contemporary psychological research, 
especially relative to the potential complexity of the varia-
tion and covariation. Consequently, it is desirable to consider 
multilevel multivariate meta-analytic model specifications 
that are not only easily estimable and interpretable (as more 
generally) but also parsimonious.

In this paper, we aim to help overcome these challenges 
so that multilevel multivariate meta-analytic models will be 
more often employed in practice. We do so by introducing 
MLMVmeta—an easy-to-use web application that imple-
ments multilevel multivariate meta-analytic methodology 
that is both specially tailored to contemporary psychological 
research and easily estimable, interpretable, and parsimoni-
ous—and illustrating it across three case studies.

MLMVmeta is available at https:// blake mcsha ne. shiny apps. 
io/ mlmvm eta/. It implements the novel multilevel multivari-
ate meta-analytic methodology introduced by McShane and 
Böckenholt (2018) in an easy-to-use manner. This methodol-
ogy generalizes prior work in three important respects, namely 
to simultaneously accommodate (i) an arbitrary number of 
experimental conditions that result from the manipulation of 
experimental factors and give rise to multiple dependent effects 
of interest; (ii) an arbitrary number of dependent variables; and 
(iii) an arbitrary number of levels of nesting. Therefore, it is 
well suited to contemporary psychological research because 
it can account for the variation and covariation induced by 
the facts that observations differ in their experimental factors 
and dependent variables and are nested. Nonetheless, the par-
ticular multilevel multivariate meta-analytic model specifica-
tions implemented by MLMVmeta—which include those of 
McShane and Böckenholt (2018) as well as several additional 
novel but related ones—remain easily estimable, interpretable, 
and parsimonious.

The three case studies feature hypothetical data typical of 
contemporary psychological research and demonstrate the 
more accurate and extensive results that can be obtained 
via multilevel multivariate meta-analytic models. Further, 
they sequentially build in complexity featuring increasing 
numbers of experimental factors and conditions, dependent 
variables, and levels; this in turn necessitates increasingly 
complex model specifications that also sequentially build 
upon one another.

Specifically, the first case study features the data on twin 
correlations given in Table 1 and used in studies of human 
trait heritability (see, for example, Polderman et al., (2015)). 
In this data, there are two dependent variables (i.e., dizygotic 
and monozygotic correlations) and two levels (i.e., individ-
ual-level data nested within studies).

The second case study features the data on SAT coaching 
given in Table 5 and used in studies of educational evalua-
tion (see, for example, Kalaian and Raudenbush (1996)). In 
this data, there are two experimental conditions (i.e., control 
and treatment) arising from the experimental manipulation 
of a single experimental factor (i.e., provision of coaching), 
two dependent variables (i.e., math and verbal scores), and 
three levels (i.e., individual-level data nested within groups 
of subjects nested within schools). In addition, there is a 
continuous covariate for the treatment condition (i.e., hours 
of coaching).

The third case study features the data on choice overload 
given in Table 18 and used in studies of consumer psychol-
ogy (see, for example, Chernev, Böckenholt, and Goodman 
(2015)). In this data, there are ten experimental conditions 
arising from the manipulation of three experimental factors 
(assortment size, decision goal, and decision task difficulty), 
three dependent variables (i.e., confidence, regret, and sat-
isfaction), and five levels (i.e., individual-level data nested 
within experimental conditions nested within groups of sub-
jects nested within studies nested within papers).

Although the case studies illustrate experimental research, 
the multilevel multivariate meta-analytic methodology imple-
mented by MLMVmeta is fully general and thus also accom-
modates observational research. Specifically, one can simply 
substitute the notion of an experimental condition that results 
from the manipulation of one or more experimental factors 
with the notion of a group of subjects that results from the 
variation of individual-level covariates (or omit it entirely if 
only a single group of subjects is of interest).

The remainder of this paper is organized as follows. We 
next review the basic random effects meta-analytic model 
specification. We then illustrate multilevel multivariate 
meta-analytic models as compared to the basic random 
effects meta-analytic model via the bivariate, two-level case 
study on twin correlations and the bivariate, three-level case 
study on SAT coaching. With this background, we introduce 
the multilevel multivariate meta-analytic model specification 
in full generality and then illustrate it as compared to the 
basic random effects meta-analytic model via the trivariate, 
five-level case study on choice overload. We conclude with 
a brief discussion and provide an appendix that details how 
to reproduce the results reported in the case studies using 
MLMVmeta, how to analyze other data using MLMVmeta, 
and other details about MLMVmeta.

Basic random effects model specification

The basic random effects model specification is given by

yi = � + �i + �i

https://blakemcshane.shinyapps.io/mlmvmeta/
https://blakemcshane.shinyapps.io/mlmvmeta/
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where i indexes the observations (e.g., studies); the yi are 
single statistics that summarize the individual-level data 
associated with each observation; α is treated as a fixed 
effect that models the overall average of the observations; 
the �i are treated as random effects for each observation; and 
the εi are random (i.e., sampling) errors for each observation.

The model further assumes that the �i are independently 
and identically distributed normal with mean zero and vari-
ance τ2; the εi are independently distributed normal with 
mean zero and variance vi; and the �i and εj are independent. 
Thus, the vi give the level one variances that model sampling 
variation and τ2 gives the level two variance that models 
variation among the  �i . As is standard in meta-analysis, the 
vi are assumed known, and the goal is to estimate the fixed 
effect parameter α and the variance component parameter τ2.

This model is quite limited in that it assumes that the 
observations are independent and have both a common 
average and a common degree of (non-sampling) varia-
tion. It may be suitable when studies are independent and 
adequately summarized by a single statistic. However, this 
is seldom the case in contemporary psychological research 
(e.g., it may be the case when papers feature only a single 
study and studies feature only a single experimental con-
dition and a single dependent variable and interest centers 
on only a single statistic summarizing the individual-level 
data). Further, standard generalizations to the model (e.g., 
accommodating covariates by replacing α with observation-
specific αi, which are specified as �i = �0 +

∑P

p=1
�pxi,p where 

xi,p is the pth covariate for observation i and P is the number 
of covariates) do not overcome these limitations. Therefore, 
the model can be problematic and more accurate and exten-
sive results can be obtained via multilevel multivariate meta-
analytic models as the case studies demonstrate.

Case study 1: Twin correlations

Studies of the correlations of pairs of dizygotic and monozy-
gotic twins on a given trait are an important source of data 
for investigating the heritability of the trait in question. In 
Table 1, we present hypothetical data typical of such studies. 
Each study reports an estimate of the correlation (labeled y 
in the table) of pairs of dizygotic and monozygotic twins on 
a given trait and an estimate of the sampling variance of the 
estimate of the correlation (labeled v in the table).

The multilevel multivariate meta-analytic model specifi-
cation for this data is given by

where i indexes the observations in Table 1; the αd are 
treated as fixed effects that model the overall average for 
each dependent variable; the di denote the dependent variable  

yi = �di + �i + �i

d ∈{1,2} (here denoting dizygotic and monozygotic, respec-
tively) which each observation measures; the �i are treated as 
random effects for each observation; and the εi are random 
errors for each observation.

The model further assumes that the pairs of �i for 
each study are independently and identically distributed 
bivariate normal with mean zero and variance-covariance 
matrix specified according to the multilevel multivari-
ate compound symmetry (MMCS) model specification 
with variance component parameters �2

2,d
 and �2,d,d′ to be 

discussed below. It also assumes that the εi are indepen-
dently distributed normal with mean zero and variance vi 
and that the �i and εj are independent. As is standard in 
meta-analysis, the vi are assumed known, and the goal is 
to estimate the fixed effect parameters αd and the variance 
component parameters �2

2,d
 and �2,d,d′ . Here and hereafter, 

�2
k,d

 denote variance parameters and �k,d,d′ denote correla-
tion parameters.

Table 1  Twin correlation data

Dependent variable Study ID y v

Dizygotic 1 0.3031 0.0042
Monozygotic 1 0.5428 0.0047
Dizygotic 2 0.0972 0.0045
Monozygotic 2 0.6115 0.0040
Dizygotic 3 0.3405 0.0027
Monozygotic 3 0.6912 0.0027
Dizygotic 4 0.2852 0.0072
Monozygotic 4 0.5366 0.0065
Dizygotic 5 0.2331 0.0031
Monozygotic 5 0.7522 0.0029
Dizygotic 6 0.3118 0.0026
Monozygotic 6 0.6045 0.0029
Dizygotic 7 0.5644 0.0028
Monozygotic 7 0.9238 0.0028
Dizygotic 8 0.4157 0.0076
Monozygotic 8 0.8519 0.0069
Dizygotic 9 0.5748 0.0038
Monozygotic 9 0.5559 0.0033
Dizygotic 10 0.3201 0.0072
Monozygotic 10 0.5560 0.0083
Dizygotic 11 0.4638 0.0103
Monozygotic 11 0.8653 0.0106
Dizygotic 12 0.2178 0.0031
Monozygotic 12 0.6034 0.0036
Dizygotic 13 0.3370 0.0031
Monozygotic 13 0.5777 0.0032
Dizygotic 14 0.4939 0.0035
Monozygotic 14 0.7987 0.0033
Dizygotic 15 0.1510 0.0028
Monozygotic 15 0.5111 0.0031
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The MMCS model specification implies that

and

where the �2
2,d

 and �2,d,d′ respectively give the variances and 
correlations that model the variation and covariation among 
the �i induced by level 2 of the nesting structure (here level 
2 denotes the study); m2,i,j is one if observations i and j are 
nested in the same group at level 2 (i.e., are from the same 
study) and zero otherwise; the vi are the assumed known 
sampling variances of observations; and cov(εi,εj) is zero 
because the εi and εj are independent for i≠j (i.e., because 
the observations were of different pairs of twins).

In addition to this unconstrained model specification, we 
consider a sequence of nested simplifications: a fixed effects 
specification that sets the �2

2,d
= 0 for both d such that �2,d,d′ 

is irrelevant; an equal variance, zero correlation specification 
that sets the �2

2,d
= �2

2
 for both d and �2,d,d� = 0 for d ≠ d′ ; 

and an unequal variance, zero correlation specification that 
sets �2,d,d� = 0 for d ≠ d′ . We consider these various sim-
plifications for reasons of estimability, interpretability, and 
parsimony; while these issues are not critical in this case 
study because the unconstrained specification has only three 
variance component parameters (i.e., �2

2,1
 , �2

2,2
 , and ρ2,1,2), in 

other case studies and applications, these simplifications can 
be highly important.

We present the number of variance component parameters 
estimated by, the restricted maximum likelihood log likeli-
hood (REML LL) of, and the Akaike information criterion 
(AIC) of each of these model specifications in Table 2. As 
can be seen, the unconstrained model specification performs 
best in terms of AIC. Consequently, we present estimates 
from it in Table 3. The estimates indicate that monozygotic 
twins have a larger trait correlation than dizygotic twins (i.e., 
0.664 versus 0.339), a comparison to which we return at 
the end of this case study. In addition, they indicate that 
the variation among the �i is comparable for both types of 
twins (i.e., 0.017 ≈ 0.014). Finally, they indicate that there 
is substantial correlation (i.e., 0.664) between the �i for the 
two types of twins at the study level (i.e., studies with low 

var(yi) = var(�i) + var(�i) = �2
2,di

+ vi

cov(yi, yj) = cov(�i, �j) + cov(�i, �j) = �2,di,dj�2,di�2,djm2,i,j + 0

(high) trait correlations for dizygotic twins tend to have low 
(high) trait correlations for monozygotic twins).

In addition to considering multilevel multivariate meta-
analytic model specifications, we also present estimates from 
the basic random effects model in Table 4. In particular, we 
present estimates from two variants of this model: Model 1 
is the basic random effects model with a single fixed effect 
parameter α and a single variance component parameter τ2 
while Model 2 generalizes Model 1 to allow for fixed effect 
parameters that accommodate differences between dizygotic 
and monozygotic twins. We note that REML LL and AIC 
are comparable only across models that include the same 
fixed effect parameters; consequently, only Model 2 can be 
compared to the model specifications presented in Table 2. 
However, because in this case study there are only two lev-
els in the nesting structure and the random errors for each 
observation are independent (i.e., because the observations 
were of different pairs of twins), Model 2 is equivalent to 
the equal variance, zero correlation multilevel multivariate 
meta-analytic model specification. Therefore, it performs 
worse in terms of AIC as compared to the multilevel multi-
variate meta-analytic model specification discussed above.

From the perspective of theory, these basic random 
effects model variants are inappropriate because they ignore 

Table 2  Twin correlation MMCS model performance

Model specification Variance component parameters REML LL AIC

Fixed effects 0 -19.84 39.68
Equal variance, zero correlation 1 15.43 -28.85
Unequal variance, zero correlation 2 15.46 -26.91
Unconstrained 3 17.74 -29.48

Table 3  Twin correlation unconstrained MMCS model estimates

Dependent variable α τ2 ρ 

Estimate Std. error Estimate Estimate

Dizygotic 0.339 0.037 0.017 0.664
Monozygotic 0.664 0.035 0.014

Table 4  Twin correlation basic random effects model estimates

Model Dependent variable α τ2 

Estimate Std. error Estimate

Model 1 Not applicable 0.502 0.039 0.042
Model 2 Dizygotic 0.339 0.036 0.015

Monozygotic 0.664 0.036
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differences between dependent variables. Further, from the 
perspective of the data structure, they are inappropriate 
because they ignore the fact that observations are nested 
within studies and treat all observations as independent. 
Both of these have important implications for the estimates 
obtained from these models.

First, the estimate of the fixed effect from Model 1 is 
rather nonsensical and uninterpretable because it ignores 
differences between dizygotic and monozygotic twin cor-
relations. As a consequence, the estimate of the variance 
component is inflated relative to those of the multilevel mul-
tivariate meta-analytic model.

Second, while the estimates of the fixed effects and 
the variance component from Model 2 are reasonable and 
match those of the multilevel multivariate meta-analytic 
model, this is direct consequence of the fact that the mul-
tilevel multivariate meta-analytic model estimates of the 
variance components are similar for both types of twins 
(i.e., 0.017 ≈ 0.014). Had they differed—which they may 
well have empirically—the estimates of the fixed effects 
and the variance component from Model 2 would not nec-
essarily have been reasonable. Further, because the basic 
random effects model and its variants assume independence 
across observations, the estimates of the fixed effects are 
necessarily assumed independent; however, the multilevel 
multivariate meta-analytic model estimates indicate sub-
stantial correlation (i.e., 0.664) between the �i at the study 
level which results in a substantial and heretofore unmen-
tioned estimate of the correlation (i.e, 0.524) between the 
estimates of the fixed effects.

Consequently, these basic random effects model variants 
are unsuitable for conducting statistical inference (e.g., con-
fidence interval (CI) estimation, null hypothesis significance 
testing) on linear combinations—in particular, in this case 
study, the difference between monozygotic and dizygotic 
twin correlations, αMonozygotic − αDizygotic—of the fixed effect 
parameters1. Therefore, we conduct statistical inference for 
this difference for only the multilevel multivariate meta-ana-
lytic model. The estimate of this difference is 0.664 − 0.339 

= 0.325 and the estimate of the standard error of this esti-
mate of this difference is

where these follow from the estimates of the fixed effects 
and the estimates of the standard errors of the fixed effect 
estimates in Table 3 as well as the estimate of the correlation 
of the fixed effect estimates discussed above. Therefore, a 
95% CI estimate of this difference is 0.325 ± 1.960 ⋅ 0.035 
= [0.255,0.394], and the z-statistic and p-value against the 
point null hypothesis of zero difference are 0.325/0.035 = 
9.214 and less than 0.001, respectively.

Case study 2: SAT coaching

Studies of the effect of coaching on multiple measures of 
test performance are an important source of data for evaluat-
ing educational interventions. In Table 5, we present hypo-
thetical data typical of such studies. Each study reports an 
estimate of the mean performance (labeled y in the table) 
on the math and verbal sections of the SAT of a group of 
control students provided no coaching and a group of treated 
students provided coaching in a given school and an esti-
mate of the sampling variance of the estimate of the mean 
performance (labeled v in the table). The table also reports 
the number of hours of coaching provided to the groups of 
students. In Table 6, we present the estimate of the sampling 
variance-covariance matrix of the estimates of the mean per-
formance (of which v forms the diagonal) which gives the 
level one variances and covariances that model sampling 
variation and covariation, respectively; it follows a 2 × 2 
block diagonal structure because sampling covariances are 
zero when observations are of different groups of students.

In the absence of the continuous covariate (i.e., hours of 
coaching), the multilevel multivariate meta-analytic model 
specification for this data is given by

where i indexes the observations in Table 5; the αc,d are 
treated as fixed effects that model the overall average for each 
experimental condition and dependent variable; the ci denote 
the experimental condition c ∈{1,2} (here denoting control 
and treatment, respectively) to which each observation is 
assigned; the di denote the dependent variable d ∈{1,2} 
(here denoting math and verbal, respectively) which each 
observation measures; the �i are treated as random effects 
for each observation; and the εi are random errors for each 
observation.

To account for the number of hours of coaching provided 
to the treated group of students, the model replaces the αc,d 
with observation-specific αi which are specified as

√

0.0372 + 0.0352 − 2 ⋅ 0.524 ⋅ 0.037 ⋅ 0.035 = 0.035

yi = �ci,di + �i + �i

1 To conduct statistical inference for linear combinations of fixed 
effect parameters in general, we let a be a column vector containing 
the estimates of the fixed effects (e.g., those in Table  3), S be 
the estimate of the variance-covariance matrix of a (available on 
MLMVmeta), and L be the matrix whose rows are the linear 
combination vectors (e.g., (− 1 1) for the difference between 
monozygotic and dizygotic twin correlations), and use Wald standard 
errors for inference. Specifically, estimates of the linear combinations 
are given by La and estimates of the standard errors of these estimates 
are given by the square root of the diagonal of LSLT. CI estimates, 
z-statistics, and p-values follow from these. Statistical inference can 
be performed given a, S, L, and optionally a vector of point null 
hypothesis values against which to test using an easy-to-use web 
application available at https:// blake mcsha ne. shiny apps. io/ lcwald/.

https://blakemcshane.shinyapps.io/lcwald/
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Because  Hoursi is by definition zero for observations which 
are assigned to the control condition, we set the α1,1,d to zero.

The model further assumes that the quadruplets of �i for 
each school are independently and identically distributed 
quadvariate normal with mean zero and variance-covariance 
matrix specified according to the MMCS model specifica-
tion with variance component parameters �2

k,d
 and �k,d,d′ to be 

discussed below. It also assumes that the pairs of εi for each 
group of students are independently distributed bivariate nor-
mal with mean zero and variance-covariance matrix given by 
the relevant entries of the estimate of the sampling variance-
covariance matrix discussed above and that the �i and εj are 

�i = �0,ci,di + �1,ci,diHoursi.
independent. As is standard in meta-analysis, the estimate of 
the sampling variance-covariance matrix is assumed known, 
and the goal is to estimate the fixed effect parameters αp,c,d and 
the variance component parameters �2

k,d
 and �k,d,d′.

The MMCS model specification implies that

and

where the �2
k,d

 and �k,d,d′ respectively give the variances and 
correlations that model the variation and covariation among 

var(yi) = var(�i) + var(�i) = (�2
2,di

+ �2
3,di

) + vi

cov(yi, yj) = cov(�i, �j) + cov(�i, �j)

= (�2,di,dj�2,di�2,djm2,i,j + �3,di,dj�3,di�3,djm3,i,j) + vi,j

Table 5  SAT coaching data. The full data are available on MLMVmeta

Condition description Dependent variable School ID Group ID y v Hours

Control Math 1 1 514.5 156.8 0
Control Verbal 1 1 533.8 176.3 0
Treatment Math 1 2 540.3 292.1 7.5
Treatment Verbal 1 2 540.8 224.7 7.5
Control Math 2 3 473.2 160.0 0
Control Verbal 2 3 497.8 154.4 0
Treatment Math 2 4 487.9 191.2 5.0
Treatment Verbal 2 4 509.3 143.6 5.0
Control Math 3 5 497.0 55.2 0
Control Verbal 3 5 493.5 53.5 0
Treatment Math 3 6 522.3 50.3 5.0
Treatment Verbal 3 6 514.0 44.2 5.0
Control Math 4 7 504.3 40.4 0
Control Verbal 4 7 503.5 43.3 0
Treatment Math 4 8 517.1 38.8 7.5
Treatment Verbal 4 8 517.1 37.1 7.5
Control Math 5 9 520.3 91.5 0
Control Verbal 5 9 496.9 101.5 0
Treatment Math 5 10 551.2 85.5 20.0
Treatment Verbal 5 10 539.3 82.5 20.0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Table 6  SAT coaching sampling variance-covariance matrix. The full matrix is available on MLMVmeta

156.8 87.4 0 0 0 0 0 0 …
87.4 176.3 0 0 0 0 0 0 …
0 0 292.1 189.4 0 0 0 0 …
0 0 189.4 224.7 0 0 0 0 …
0 0 0 0 160.0 66.0 0 0 …
0 0 0 0 66.0 154.4 0 0 …
0 0 0 0 0 0 191.2 91.2 …
0 0 0 0 0 0 91.2 143.6 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋱ 
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the �i induced by level k of the nesting structure (here level 
2 denotes the group of students and level 3 denotes the 
school); mk,i,j is one if observations i and j are nested in the 
same group at level k and zero otherwise; and the vi and vi,j 
are respectively the assumed known sampling variances and 
covariances of the observations.

In addition to the MMCS model specification, we also 
consider a special case of MMCS termed equal allocation 
multilevel multivariate compound symmetry (EAMMCS)  
that constrains the fractional allocation of the variation 
and covariation induced by the nesting structure to be 
equal across all dependent variable pairs. In particular, 
if we let �k,d,d� = �k,d,d��k,d�k,d� , �d,d� =

∑K

k=2
�k,d,d� , and 

�k,d,d� = �k,d,d�∕�d,d� where K is the number of levels in 
the nesting structure (here K is 3), EAMMCS holds when 
we constrain the �k,d,d′ (i.e., the fractional allocation of the 
covariation among dependent variables d and d′ induced 
by level k of the nesting structure) to be equal to πk for all 
d, d� ∈ {1, ...,D} where D is the number of dependent vari-
ables (here D is 2). Under the EAMMCS specification, the 
original MMCS variance component parameters �2

k,d
 and 

�k,d,d′ where k ∈{2,...,K} and d, d� ∈ {1, ...,D} are param-
eterized by the EAMMCS variance component parameters 
�2
d
 , �d,d′ , and πk where the πk are constrained to be between 

zero and one and to sum to one. Specifically, �2
k,d

= �k�
2

d
 , 

which can be seen by noting that �k,d,d = �2
k,d

 and �d,d = �2
d
 . 

Further, �k,d,d� = �d,d� , which can be seen by noting that

does not depend on k. We consider the EAMMCS model 
specification for reasons of estimability, interpretability, and 
parsimony.

In addition to these unconstrained MMCS and EAMMCS  
model specifications, we also consider a sequence of nested 

�k,d,d� =
�k,d,d�

�k,d�k,d�
=

�k�d,d�

√

�k�
2

d

√

�k�
2

d�

=
�d,d�

�d�d�

simplifications. For MMCS, we consider a fixed effects 
specification that sets the �2

k,d
= 0 for both k and both d such 

that the �k,d,d′ are irrelevant; an equal variance, zero cor-
relation specification that sets the �2

k,d
= �2

k
 for both d and 

the �k,d,d� = 0 for d ≠ d′ ; and an unequal variance, zero cor-
relation specification that sets the �k,d,d� = 0 for d ≠ d′ . For 
EAMMCS, we consider a fixed effects specification that sets 
the �2

d
= 0 for both d such that �d,d′ and the πk are irrelevant; 

an equal variance, zero correlation specification that sets the 
�2
d
= �2 for both d and �d,d� = 0 for d ≠ d′ ; and an unequal 

variance, zero correlation specification that sets �d,d� = 0 
for d ≠ d′ . The appendix details all model specifications 
implemented by MLMVmeta and cases in which they are 
equivalent.

We present the number of variance component param-
eters estimated by, the REML LL of, and the AIC of each of 
these model specifications in Table 7. As can be seen, the 
unconstrained EAMMCS model specification performs best 
in terms of AIC. Consequently, we present estimates from 
it in Tables 8 and 9. The estimates indicate that coaching 
results in improved test performance relative to no coach-
ing, a comparison to which we return at the end of this case 
study. In addition, they indicate that there is much greater 
variation among the �i for math scores than for verbal scores 
(i.e., 168.31 versus 39.03). Further, they indicate that there 
is much greater variation and covariation among the �i at the 
school level than at the group level (i.e., 0.73 versus 0.27). 
Finally, they indicate that there is substantial correlation 
(i.e., 0.53) between the �i for the two scores at the school 
level and the group level.

Given the estimates of the EAMMCS variance compo-
nent parameters �2

d
 , �d,d′ , and πk presented in Table 9, it is 

trivial to obtain estimates of the MMCS variance component 
parameters �2

k,d
 and �k,d,d′ . In particular, one can estimate the 

�2
k,d

 by multiplying the estimates of πk and �2
d
 ; for example, 

the estimate of the Level 3 math dependent variable variance 

Table 7  SAT coaching MMCS and EAMMCS model performance

Model specification Variance component parameters REML LL AIC

MMCS
Fixed effects 0 -835.69 1671.39
Equal variance, zero correlation 2 -757.06 1518.12
Unequal variance, zero correlation 4 -749.58 1507.16
Unconstrained 6 -746.03 1504.07
EAMMCS
Fixed effects 0 -835.69 1671.39
Equal variance, zero correlation 2 -757.06 1518.12
Unequal variance, zero correlation 3 -749.62 1505.24
Unconstrained 4 -746.31 1500.62
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component is given by 0.73 ⋅ 168.31 ≈ 123.10. Further, one 
can estimate the �k,d,d′ by the �d,d′ ; for example, the estimate 
of the Level 3 correlation variance component is given by 
0.53. These estimates are presented in Table 10.

In addition to considering multilevel multivariate meta-
analytic model specifications, we also present estimates from 
the basic random effects model in Table 11. In particular, we 
present estimates from three variants of this model: Model 1 
is the basic random effects model with a single fixed effect 
parameter α and a single variance component parameter τ2, 
Model 2 generalizes Model 1 to allow for fixed effect param-
eters that accommodate differences between the experimen-
tal conditions, and Model 3 generalizes Model 2 to further 
allow for fixed effect parameters that accommodate differ-
ences between the dependent variables. We note that REML 
LL and AIC are comparable only across models that include 
the same fixed effect parameters; consequently, only Model 
3 can be compared to the model specifications presented in 
Table 7. The REML LL and AIC of Model 3 are -780.43 
and 1562.85, respectively. Therefore, it performs worse in 
terms of AIC as compared to the multilevel multivariate 
meta-analytic model specification discussed above.

From the perspective of theory, these basic random 
effects model variants are inappropriate because they ignore 
differences between experimental conditions and dependent 
variables. Further, from the perspective of the data struc-
ture, they are inappropriate because they ignore the fact that 
observations nested within groups of subjects and schools 
and treat all observations as independent. Both of these have 
important implications for the estimates obtained from these 
models.

First, the estimate of the fixed effect from Model 1 is 
rather nonsensical and uninterpretable because it ignores 
differences between experimental conditions and dependent 
variables. As a consequence, the estimate of the variance 
component is inflated relative to those of the multilevel mul-
tivariate meta-analytic model.

Second, the estimates of the fixed effects from both Model 
2 and Model 3 are reasonable and are not dissimilar to those 
of the multilevel multivariate meta-analytic model. However, 
this fact only holds for Model 2 as a direct consequence of 
the fact that the estimates of the fixed effects are similar for 
both dependent variables. Had they differed—which they may 
well have empirically—the estimates of the fixed effects from 
Model 2 would not necessarily have been reasonable. Fur-
ther, because the basic random effects model has only a single 
variance component parameter and thus assumes that there 
are only two levels in the nesting structure and equality across 
dependent variables, the Model 2 and Model 3 estimates of the 
variance component (i.e., 102.64 and 100.14, respectively) are 
rather nonsensical and uninterpretable because they ignore dif-
ferences between dependent variables; indeed, the multilevel 
multivariate meta-analytic model estimates indicate substan-
tial differences between the dependent variables (i.e., 168.31 
for math and 39.03 for verbal). Finally, Model 2 and Model 
3 assume that none of the variation is at the school level, all 

Table 9  SAT coaching unconstrained EAMMCS model variance 
component estimates

Dep. variable τ2 ρ  Level π 
Estimate Estimate Estimate

Math 168.31 0.53 School 0.73
Verbal 39.03 Group 0.27

Table 10  SAT coaching unconstrained EAMMCS model variance 
component estimates presented as MMCS variance component esti-
mates

Dep. variable School (Level 3) Group (Level 2)

τ2 ρ τ2 ρ 

Estimate Estimate Estimate Estimate

Math 123.10 0.53 45.21 0.53
Verbal 28.54 10.48

Table 11  SAT coaching basic random effects model estimates

Model Dependent variable & 
condition description

α τ2 

Estimate Std. err. Estimate

Model 1 Not applicable 510.82 1.28 247.30
Model 2 Control 500.99 1.33 102.64

Treatment 500.38 3.18
Treatment × hours 1.90 0.27

Model 3 Math; control 500.12 1.87 100.14
Math; treatment 499.46 4.48
Math; treatment × hours 2.21 0.38
Verbal; control 501.86 1.87
Verbal; treatment 501.34 4.44
Verbal; treatment × hours 1.57 0.37

Table 8  SAT coaching unconstrained EAMMCS model fixed effect 
estimates

Dependent variable & condition
description

Estimate Standard error

Math; control 500.04 2.20
Math; treatment 499.30 4.62
Math; treatment × hours 2.20 0.38
Verbal; control 501.94 1.48
Verbal; treatment 500.13 3.40
Verbal; treatment × hours 1.65 0.28
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is at the group level, and there is no covariation between the 
two dependent variables at any level; on the other hand, the 
multilevel multivariate meta-analytic model estimates indicate 
that 73% of the variation is at the school level, 27% is at the 
group level, and the covariation is substantial (i.e., correlated 
at 0.53).

Consequently, these basic random effects model variants 
are unsuitable for conducting statistical inference on the fixed 
effect parameters or linear combinations of them (i.e., because 
statistical inference depends on the estimate of the variance-
covariance matrix of the estimates of the fixed effects which 
in turn depends on the estimates of the variance components; 
here, for example, the estimates of the standard errors of the 
estimates of the fixed effects for Model 3 are inflated relative 
to those of the multilevel multivariate meta-analytic model 
for verbal and deflated for math and the estimates of the cor-
relations of the estimates of the fixed effects for Model 3 are 
deflated relative to those of the multilevel multivariate meta-
analytic model). Therefore, we conduct statistical inference for 
such linear combinations—in particular, the effect of various 
hours of coaching on math and verbal scores—for only the 
multilevel multivariate meta-analytic model. Specifically, we 
conduct statistical inference for the linear combinations

and

Estimates, 95% CI estimates, estimates of standard errors 
of the estimates, and z-statistics and p-values against the 
point null hypothesis of zero are presented in Table 12. The 
estimates indicate that SAT coaching results in modest to 
moderate improvements in math and verbal scores depend-
ing on the number of hours of coaching.

�0,Treatment,Math + �1,Treatment,MathHours − �0,Control,Math

�0,Treatment,Verbal + �1,Treatment,VerbalHours − �0,Control,Verbal.

Case study 2 revisited: SAT coaching 
standardized

The estimates presented in Case Study 2 are on the SAT 
score scale. However, it is common in meta-analysis to pre-
sent estimates on a standardized scale such as the correlation 
scale as in Case Study 1 or the standardized mean difference 
(or Cohen’s d) scale. To achieve this, the data is converted to 
the standardized scale prior to analysis such that the result-
ing estimates are on the standardized scale. For comparison 
purposes, we also present estimates on a standardized scale, 
specifically the standardized mean difference scale.

In Table 13, we present the data presented in Table 5 on 
the standardized mean difference scale. Each study reports 
an estimate of the standardized mean difference (labeled y in 
the table) in the performance on the math and verbal sections 
of the SAT of a group of treated students provided coaching 
and a group of control students provided no coaching in a 
given school and an estimate of the sampling variance of 
the estimate of the standardized mean difference (labeled 
v in the table). The table also reports the number of hours 
of coaching provided to the treated groups of students. On 

Table 12  SAT coaching unconstrained EAMMCS model effect estimates

Dependent variable & hours Estimate [95% CI] Standard error z-statistic p-value

Math; 5 hours 10.26 [4.22, 16.31] 3.08 3.33 < 0.001 
Math; 10 hours 21.26 [16.96, 25.57] 2.20 9.68 < 0.001 
Math; 20 hours 43.27 [35.26, 51.27] 4.08 10.59 < 0.001 
Verbal; 5 hours 6.46 [1.70, 11.21] 2.43 2.66 0.008
Verbal; 10 hours 14.73 [11.21, 18.25] 1.80 8.20 < 0.001 
Verbal; 20 hours 31.28 [25.13, 37.43] 3.14 9.97 < 0.001 

Table 13  SAT coaching standardized data. The full data as well as 
the estimate of the sampling variance-covariance matrix are available 
on MLMVmeta

Dep. variable School ID y v Hours

Math 1 0.2509 0.0425 7.5
Verbal 1 0.0713 0.0417 7.5
Math 2 0.1556 0.0393 5
Verbal 2 0.1318 0.0391 5
Math 3 0.2466 0.0100 5
Verbal 3 0.2082 0.0101 5
Math 4 0.1293 0.0081 7.5
Verbal 4 0.1367 0.0081 7.5
Math 5 0.3254 0.0196 20
Verbal 5 0.4369 0.0195 20
⋮ ⋮ ⋮ ⋮ ⋮ 
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MLMVmeta, we present the estimate of the sampling vari-
ance-covariance matrix of the estimates of the standardized 
mean differences.

In the absence of the continuous covariate, the multilevel 
multivariate meta-analytic model specification for this data 
is given by

where i indexes the observations in Table 13; the αd are 
treated as fixed effects that model the overall average for 
each dependent variable; the di denote the dependent vari-
able d ∈{1,2} (here denoting math and verbal, respectively) 
which each observation measures; the �i are treated as ran-
dom effects for each observation; and the εi are random 
errors for each observation.

To account for the number of hours of coaching provided 
to the treated group of students, the model replaces the αd 
with observation-specific αi which are specified as

The model further assumes that the pairs of �i for each 
school are independently and identically distributed bivari-
ate normal with mean zero and variance-covariance matrix 
specified according to the MMCS model specification with 
variance component parameters �2

2,d
 and �2,d,d′ to be dis-

cussed below. It also assumes that the pairs of εi for each 
school are independently distributed bivariate normal with 
mean zero and variance-covariance matrix given by the 
relevant entries of the estimate of the sampling variance-
covariance matrix discussed above and that the �i and εj are 
independent. As is standard in meta-analysis, the estimate of 
the sampling variance-covariance matrix is assumed known, 
and the goal is to estimate the fixed effect parameters αp,d 
and the variance component parameters �2

2,d
 and �2,d,d′.

The MMCS model specification implies that

and

where the �2
2,d

 and �2,d,d′ respectively give the variances and 
correlations that model the variation and covariation among 

yi = �di + �i + �i

�i = �0,di + �1,diHoursi.

var(yi) = var(�i) + var(�i) = �2
2,di

+ vi

cov(yi, yj) = cov(�i, �j) + cov(�i, �j) = �2,di,dj�2,di�2,djm2,i,j + vi,j

the �i induced by level 2 of the nesting structure (here level 
2 denotes the school); m2,i,j is one if observations i and j are 
nested in the same group at level 2 (i.e., are from the same 
school) and zero otherwise; and the vi and vi,j are respec-
tively the assumed known sampling variances and covari-
ances of the observations. We note that this model specifi-
cation is equivalent to that used in Case Study 1 with three 
exceptions: the dependent variables here are standardized 
mean differences in the performance on the math and verbal 
sections of the SAT rather than correlations of pairs of dizy-
gotic and monozygotic twins as in Case Study 1, the model 
here accounts for the continuous covariate which was absent 
in Case Study 1, and the model here accounts for covaria-
tion within the pairs of εi for each school which was absent 
in Case Study 1.

In addition to this unconstrained model specification, we 
consider a sequence of nested simplifications: a fixed effects 
specification that sets the �2

2,d
= 0 for both d such that �2,d,d′ 

is irrelevant; an equal variance, zero correlation specification 
that sets the �2

2,d
= �2

2
 for both d and �2,d,d� = 0 for d ≠ d′ ; and 

an unequal variance, zero correlation specification that sets 
�2,d,d� = 0 for d ≠ d′.

We present the number of variance component param-
eters estimated by, the REML LL of, and the AIC of each of 
these model specifications in Table 14. As can be seen, the 
unconstrained model specification performs best in terms of 
AIC. Consequently, we present estimates from it in Table 15. 
The estimates indicate that coaching results in improved test 
performance relative to no coaching, a comparison to which 
we return at the end of this case study. In addition, they 
indicate that there is much greater variation among the �i 
for math scores than for verbal scores (i.e., 0.011 versus 

Table 14  SAT coaching standardized MMCS model performance

Model specification Variance component parameters REML LL AIC

Fixed effects 0 55.16 -110.31
Equal variance, zero correlation 1 58.49 -114.99
Unequal variance, zero correlation 2 59.81 -115.62
Unconstrained 3 61.22 -116.44

Table 15  SAT coaching standardized unconstrained MMCS model 
estimates

Dependent variable α τ2 ρ 

Estimate Std. error Estimate Estimate

Math -0.021 0.054 0.011 0.768
Math × hours 0.024 0.005
Verbal -0.064 0.044 0.003
Verbal × hours 0.021 0.004
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0.003). Finally, they indicate that there is substantial cor-
relation (i.e., 0.768) between the �i for the two scores at the 
school level.

In addition to considering multilevel multivariate meta-
analytic model specifications, we also present estimates from 
the basic random effects model in Table 16. In particular, we 
present estimates from two variants of this model: Model 1 
is the basic random effects model with a single fixed effect 
parameter α and a single variance component parameter 
τ2 while Model 2 generalizes Model 1 to allow for fixed 
effect parameters that accommodate differences between 
the dependent variables and the number of hours of coach-
ing provided to the treated group of students. We note that 
REML LL and AIC are comparable only across models that 
include the same fixed effect parameters; consequently, only 
Model 2 can be compared to the model specifications pre-
sented in Table 14. The REML LL and AIC of Model 2 are 
48.37 and -94.74, respectively. Therefore, it performs worse 
in terms of AIC as compared to the multilevel multivariate 
meta-analytic model specification discussed above.

From the perspective of theory, these basic random 
effects model variants are inappropriate because they ignore 
differences between dependent variables. Further, from the 
perspective of the data structure, they are inappropriate 
because they ignore the fact that observations are nested 
within schools and treat all observations as independent. 
Both of these have important implications for the estimates 
obtained from these models.

First, the estimate of the fixed effect from Model 1 is 
rather nonsensical and uninterpretable because it ignores dif-
ferences between dependent variables and hours of coaching. 
As a consequence, the estimate of the variance component 
is inflated relative to those of the multilevel multivariate 
meta-analytic model.

Second, the estimates of the fixed effects from Model 2 
are reasonable and are not dissimilar to those of the multi-
level multivariate meta-analytic model. However, because 
the basic random effects model has only a single variance 
component parameter and thus assumes equality across 
dependent variables, the Model 2 estimate of the variance 

component (i.e., 0.007) is rather nonsensical and uninter-
pretable because it ignores differences between dependent 
variables; indeed, the multilevel multivariate meta-analytic 
model estimates indicate substantial differences between 
the dependent variables (i.e., 0.011 for math and 0.003 for 
verbal). Further, Model 2 assumes that there is no correla-
tion in this variation between the two dependent variables; 
on the other hand, the multilevel multivariate meta-analytic 
model estimates indicate that the correlation is substantial 
(i.e., 0.768).

Consequently, these basic random effects model variants 
are unsuitable for conducting statistical inference on the 
fixed effect parameters or linear combinations of them (e.g., 
the estimates of the standard errors of the estimates of the 
fixed effects for Model 2 are inflated relative to those of the 
multilevel multivariate meta-analytic model for verbal and 
deflated for math and the estimates of the correlations of the 
estimates of the fixed effects for Model 2 are deflated relative 
to those of the multilevel multivariate meta-analytic model). 
Therefore, we conduct statistical inference for such linear 
combinations—in particular, the effect of various hours of 
coaching on math and verbal scores—for only the multilevel 
multivariate meta-analytic model. Specifically, we conduct 
statistical inference for the linear combinations

and

Estimates, 95% CI estimates, estimates of the standard errors 
of the estimates, and z-statistics and p-values against the 
point null hypothesis of zero are presented in Table 17. The 
estimates indicate that SAT coaching results in improve-
ments in math and verbal scores depending on the number 
of hours of coaching.

Because the estimates in Table 17 are in standard devia-
tion units, it is difficult to assess their magnitude. In contrast, 
the estimates in Table 12 from the initial analysis are in SAT 
score units and thus are more interpretable.

The initial analysis also has another advantage rela-
tive to this analysis. Specifically, it can assess variation 
and covariation that is common to the groups of students 
within a school as well as that which is idiosyncratic to 
each group of students. Indeed, the estimates in Table 9 
indicate that there is much greater variation at the school 
level than at the group level (i.e., 0.73 versus 0.27). In 
contrast, due to the differencing involved in conversion 
to the standardized mean difference scale, any variation 
and covariation that is common to the groups of students 
within a school is lost and only variation and covaria-
tion which is idiosyncratic to groups of students can be 

�0,Math + �1,MathHours

�0,Verbal + �1,VerbalHours.

Table 16  SAT coaching standardized basic random effects model 
estimates

Model Dependent variable α τ2 

Estimate Std. error Estimate

Model 1 Not applicable 0.200 0.019 0.020
Model 2 Math -0.026 0.049 0.007

Math × hours 0.024 0.004
Verbal -0.068 0.049
Verbal × hours 0.022 0.004
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assessed. Consequently, the estimates in Table 15 do not 
assess this substantial source of variation and covariation.

We also note two cautions that are due when convert-
ing to a common scale, standardized or otherwise. First, 
one should be careful that the same or a similar construct 
is assessed across studies and that any differences are 
solely in the scales used for the dependent variable across 
studies. Second, one should be careful that the conversion 
employed is reasonable, in particular that any and all dif-
ferences in how individuals might respond to differences 
in the scales are accounted for by the conversion.

In addition, we note that the historical motivation for 
conversion to a standardized scale was to adjust for differ-
ences in the scales used for the dependent variable across 
studies. However, such adjustment is not necessary in 
this case study (i.e., because the same scale was used for 
each dependent variable across all studies). Further, it is 
preferable in meta-analysis, as in statistical analysis more 
generally, to present estimates on the original scale when 
possible (e.g., when the scale used for the dependent vari-
able across studies is the same; Tukey (1969), Greenland, 
Schlesselman, and Criqui (1986), Wilkinson (1999), Bond, 
Wiitala, and Richard (2003), and Baguley (2009)).

We finally note that when the scale used for a depend-
ent variable across studies is the same as in this case 
study, it is also common in meta-analysis to convert the 
data to the raw (or unstandardized) difference scale prior 
to analysis such that the resulting estimates are estimates 
of differences (i.e., as are those estimates presented in 
Table 12). While this approach avoids any concerns about 
conversion, it is nonetheless disadvantageous for a reason 
discussed above, namely that due to the differencing any 
variation and covariation that is common to the groups 
of students within a school is lost and only variation and 
covariation which is idiosyncratic to groups of students 
can be assessed.

The appendix details the degree to which the model 
specifications implemented by MLMVmeta accommodate 
differences in the scales used across both dependent vari-
ables and studies.

Multilevel multivariate model specification

Before proceeding to the third and most complex case study, 
we introduce the multilevel multivariate meta-analytic model 
specification in full generality.

The general model specification is given by

where i indexes the observations; the αc,d are treated as fixed 
effects that model the overall average for each experimental 
condition and dependent variable; the ci denote the experi-
mental condition c ∈{1,...,C} to which each observation is 
assigned; the di denote the dependent variable d ∈{1,...,D} 
which each observation measures; the �i are treated as ran-
dom effects for each observation; and the εi are random 
errors for each observation.

The model further assumes that the vector containing 
the �i is distributed multivariate normal with mean zero 
and variance-covariance matrix specified according to 
the MMCS model specification with variance component 
parameters �2

k,d
 and �k,d,d′ to be discussed below. It also 

assumes that the vector containing the εi is distributed mul-
tivariate normal with mean zero and variance-covariance 
matrix given by the estimate of the sampling variance-
covariance matrix of the yi and that the �i and εj are inde-
pendent. As is standard in meta-analysis, the estimate of the 
sampling variance-covariance matrix is assumed known, 
and the goal is to estimate the fixed effects parameters αc,d 
and the variance component parameters �2

k,d
 and �k,d,d′.

The MMCS model specification implies that

and

yi = �ci,di + �i + �i

var(yi) = var(�i) + var(�i) =

(

K
∑

k=2

�2
k,di

)

+ vi

cov(yi, yj) = cov(�i, �j) + cov(�i, �j)

=

(

K
∑

k=2

�k,di,dj�k,di�k,djmk,i,j

)

+ vi,j

Table 17  SAT coaching standardized unconstrained MMCS model effect estimates

Dependent variable & hours Estimate [95% CI] Standard error z-statistic p-value

Math; 5 hours 0.096 [0.028,0.165] 0.035 2.76 0.006
Math; 10 hours 0.214 [0.169,0.260] 0.023 9.24 < 0.001 
Math; 20 hours 0.449 [0.355,0.544] 0.048 9.35 < 0.001 
Verbal; 5 hours 0.041 [-0.015,0.097] 0.029 1.44 0.149
Verbal; 10 hours 0.146 [0.109,0.183] 0.019 7.69 < 0.001 
Verbal; 20 hours 0.356 [0.279,0.433] 0.039 9.09 < 0.001 
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where K is the number of levels in the nesting structure; the 
�2
k,d

 and �k,d,d′ respectively give the variances and correla-
tions that model the variation and covariation among the 
�i induced by level k of the nesting structure; mk,i,j is one if 
observations i and j are nested in the same group at level k 
and zero otherwise; and the vi and vi,j are respectively the 
assumed known sampling variances and covariances of the 
observations. As such, the �i can be decomposed as

where the  IDk,i denote the identity of each observation at 
each level and the vectors containing the �

k,ID,1,...,�k,ID,D for 
each ID at each level are assumed to be independently dis-
tributed multivariate normal with mean zero and variance-
covariance matrix specified by the �2

k,d
 and �k,d,d′.

As can be seen, this model generalizes the basic random 
effects model in several important respects. In particular, the 
basic random effects model holds when K = 2 and m2,i,j = 0 
for all i≠j such that the �2,d,d′ are irrelevant and the vi,j = 0, 
the αc,d = α for all c and d, and the �2

2,d
= �2 for all d.

Like the basic random effects model, this model can, as 
illustrated in Case Study 2, be generalized to accommodate 
covariates by replacing the αc,d with observation-specific αi 
which are specified as �i = �0,c,d +

∑P

p=1
�p,c,dxi,p where xi,p 

is the pth covariate for observation i and P is the number of 
covariates.

While there are multiple ways to estimate this model 
as well as the basic random effects model, estimation on 
MLMVmeta proceeds as follows: (i) the sampling vari-
ance-covariance matrix is supplied by the user (typically 
an estimate of this matrix based on conventional formulae 
is supplied, and, as is standard in meta-analysis, this esti-
mate is assumed known); (ii) the �2

k,d
 and �k,d,d′ are estimated 

using REML conditional on the (estimate of the) sampling 
variance-covariance matrix; and (iii) the αc,d and their 
variance-covariance matrix is estimated using generalized 
least squares conditional on the estimates of the sampling 
variance-covariance matrix and the �2

k,d
 and �k,d,d′ (Harville, 

1977; Robinson, 1991).

Case study 3: Choice overload

Studies of the choice overload hypothesis, the conjecture that 
an increase in the number of options from which to choose 
can result in adverse consequences such as a decrease in 
the likelihood of making a choice or a decrease in the sat-
isfaction with a choice, are an important source of data in 
consumer psychology. In Table 18, we present hypothetical 
data typical of studies of choice overload. Each study reports 

�i =

K
∑

k=2

�k,IDk,i,di

an estimate of the mean (labeled y in the table) of one or 
more of three dependent variables (confidence, regret, and 
satisfaction; regret has been reverse-coded for consistency 
with the other two dependent variables) in either two or four 
of a total of ten experimental conditions arising from the 
manipulation of one or two of a total of three experimental 
factors (assortment size, decision goal, and decision task dif-
ficulty) and an estimate of the sampling variance of mean of 
the dependent variable (labeled v in the table). The table also 
reports the identity of the paper from which the study came, 
the study itself, the group(s) of subjects in the study, and the 
experimental conditions in the study. As can be seen, these 
studies vary considerably in terms of their experimental fac-
tors and dependent variables; examine multiple conditions 
that result from the manipulation of those experimental fac-
tors and give rise to multiple dependent effects of interest; 
and employ a mix of study designs. On MLMVmeta, we 
present the estimate of the sampling variance-covariance 
matrix of the means of the dependent variables.

The multilevel multivariate meta-analytic model speci-
fication for this data is given by

where i indexes the observations in Table 18; the αc,d are 
treated as fixed effects that model the overall average for 
each experimental condition and dependent variable; the ci 
denote the experimental condition c ∈{1,...,10} (here denot-
ing “Decision task difficulty low; assortment size small,” 
“Decision task difficulty low; assortment size large,” etc.) 
to which each observation is assigned; the di denote the 
dependent variable d ∈{1,2,3} (here denoting confidence, 
regret, and satisfaction, respectively) which each observation 
measures; the �i are treated as random effects for each obser-
vation; and the εi are random errors for each observation.

The model further assumes that the vector containing the 
�i is distributed multivariate normal with mean zero and var-
iance-covariance matrix specified according to the MMCS 
model specification with variance component parameters 
�2
k,d

 and �k,d,d′ to be discussed below. It also assumes that 
the vector containing the εi is distributed multivariate nor-
mal with mean zero and variance-covariance matrix given 
by the estimate of the sampling variance-covariance matrix 
discussed above and that the �i and εj are independent. As 
is standard in meta-analysis, the estimate of the sampling 
variance-covariance matrix is assumed known, and the goal 
is to estimate the fixed effect parameters αc,d and the vari-
ance component parameters �2

k,d
 and �k,d,d′.

The MMCS model specification implies that

yi = �ci,di + �i + �i

var(yi) = var(�i) + var(�i) =

5
∑

k=2

�2
k,di

+ vi
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and

where the �2
k,d

 and �k,d,d′ respectively give the variances and 
correlations that model the variation and covariation among 

cov(yi, yj) = cov(�i, �j) + cov(�i, �j)

=

5
∑

k=2

�k,di,dj�k,di�k,djmk,i,j + vi,j

the �i induced by level k of the nesting structure (here level 
2 denotes the experimental condition, level 3 denotes the 
group of subjects, level 4 denotes the study, and level 5 
denotes the paper); mk,i,j is one if observations i and j are 
nested in the same group at level k and zero otherwise; and 
the vi and vi,j are respectively the assumed known sampling 
variances and covariances of the observations.

Table 18  Choice overload data. The full data as well as the estimate of the sampling variance-covariance matrix are available on MLMVmeta

Condition description Dependent variable Paper ID Study ID Group ID Condition ID y v

Decision task difficulty low; Confidence 1 1 1 1 7.9310 0.0666
assortment size small
Decision task difficulty low; Confidence 1 1 1 2 8.3303 0.0595
assortment size large
Decision task difficulty high; Confidence 1 1 2 3 7.9951 0.0533
assortment size small
Decision task difficulty high; Confidence 1 1 2 4 7.3869 0.0455
assortment size large
Decision task difficulty high; Confidence 1 2 3 5 7.8693 0.0669
assortment size small
Decision task difficulty high; Confidence 1 2 3 6 8.2601 0.0709
assortment size large
Decision task difficulty high; Confidence 1 2 4 7 8.0077 0.0578
assortment size small
Decision task difficulty high; Confidence 1 2 4 8 7.0553 0.0875
assortment size large
Decision task difficulty high; Satisfaction 1 2 3 5 8.4830 0.0658
assortment size small
Decision task difficulty high; Satisfaction 1 2 3 6 8.5876 0.0568
assortment size large
Decision task difficulty high; Satisfaction 1 2 4 7 8.1818 0.0562
assortment size small
Decision task difficulty high; Satisfaction 1 2 4 8 8.0902 0.0555
assortment size large
Decision task difficulty high; Confidence 1 3 5 9 7.8656 0.0534
assortment size small
Decision task difficulty high; Confidence 1 3 6 10 8.1689 0.0547
assortment size large
Decision task difficulty high; Confidence 1 3 7 11 7.7538 0.0403
assortment size small
Decision task difficulty high; Confidence 1 3 8 12 7.1776 0.0557
assortment size large
Decision task difficulty high; Satisfaction 1 3 5 9 6.6317 0.0803
assortment size small
Decision task difficulty high; Satisfaction 1 3 6 10 7.9451 0.0581
assortment size large
Decision task difficulty high; Satisfaction 1 3 7 11 7.7166 0.0557
assortment size small
Decision task difficulty high; Satisfaction 1 3 8 12 6.9272 0.0593
assortment size large
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 



2381Behavior Research Methods (2023) 55:2367–2386 

1 3

In addition to this MMCS specification parameterized by 
the �2

k,d
 and �k,d,d′ where k ∈{2,...,5} and d, d� ∈ {1, 2, 3} , 

we as in Case Study 2 again consider the EAMMCS model 
specification parameterized by the �2

d
 , �d,d′ , and πk and again 

consider a sequence of nested simplifications to these uncon-
strained MMCS and EAMMCS model specifications. For 
MMCS, we consider a fixed effects specification that sets 
the �2

k,d
= 0 for all k and d such that the �k,d,d′ are irrelevant; 

an equal variance, zero correlation specification that sets 
the �2

k,d
= �2

k
 for all d and the �k,d,d� = 0 for all k and d ≠ d′ ; 

an unequal variance, zero correlation specification that sets 
the �k,d,d� = 0 for all k and d ≠ d′ ; and an unequal variance, 
single correlation specification that sets the �k,d,d� = �k for all 
d ≠ d′ . For EAMMCS, we consider a fixed effects specifica-
tion that sets the �2

d
= 0 for all d such that the �d,d′ and πk are 

irrelevant; an equal variance, zero correlation specification 
that sets the �2

d
= �2 for all d and the �d,d� = 0 for all d ≠ d′ ; 

an unequal variance, zero correlation specification that sets 
the �d,d� = 0 for all d ≠ d′ ; and an unequal variance, single 
correlation specification that sets the �d,d� = � for all d ≠ d′ . 
For reasons of estimability, interpretability, and parsimony, 
we do not consider unconstrained MMCS and EAMMCS 
model specifications.

We present the number of variance component param-
eters estimated by, the REML LL of, and the AIC of each of 
these model specifications in Table 19. As can be seen, the 
single correlation EAMMCS model specification performs 
best in terms of AIC. Consequently, we present estimates 
from it in Tables 20 and 21. The estimates indicate that the 
effect of large versus small assortment sizes varies according 
to the moderator variable (i.e., decision goal and decision 
task difficulty) level and dependent variable, a comparison 
to which we return at the end of this case study. In addi-
tion, they indicate that there is much greater variation among 
the �i for satisfaction as compared to confidence and regret 
(i.e., 0.47 versus 0.05 and 0.17, respectively). Further, they 
indicate that the majority (i.e., 0.40 + 0.32 = 0.72) of the 

variation and covariation among the �i is at the paper and 
study levels although all levels arguably provide a meaning-
ful source of variation and covariation. Finally, they indicate 
that there is substantial correlation (i.e., 0.63) among the βi 
for the three dependent variables at each level.

Given the estimates of the EAMMCS variance compo-
nent parameters �2

d
 , �d,d′ , and πk presented in Table 21, it is 

trivial to obtain estimates of the MMCS variance component 
parameters �2

k,d
 and �k,d,d′ as illustrated in Case Study 2.

In addition to considering multilevel multivariate meta-
analytic model specifications, we also present estimates from 
the basic random effects model in Table 22. In particular, we 
present estimates from four variants of this model: Model 1 
is the basic random effects model with a single fixed effect 
parameter α and a single variance component parameter 
τ2, Model 2 generalizes Model 1 to allow for fixed effect 
parameters that accommodate differences between small 
and large assortment sizes, Model 3 generalizes Model 2 to 
further allow for fixed effect parameters that accommodate 
differences between all experimental conditions, and Model 
4 generalizes Model 3 to further allow for fixed effect param-
eters that accommodate differences between the dependent 
variables. We note that REML LL and AIC are comparable 
only across models that include the same fixed effect param-
eters; consequently, only Model 4 can be compared to the 
model specifications presented in Table 19. The REML LL 
and AIC of Model 4 are -159.8 and 321.59, respectively. 
Therefore, it performs worse in terms of AIC as compared to 
the multilevel multivariate meta-analytic model specification 
discussed above.

From the perspective of theory, these basic random 
effects model variants are inappropriate because they 
ignore differences between experimental conditions and 
dependent variables. Further, from the perspective of the 
data structure, they are inappropriate because they ignore 
the fact that observations are nested within papers, stud-
ies, groups of subjects, and experimental conditions and 

Table 19  Choice overload MMCS and EAMMCS model performance

Model specification Variance component parameters REML LL AIC

MMCS
Fixed effects 0 -262.79 525.58
Equal variance, zero correlation 4 -116.50 241.00
Unequal variance, zero correlation 12 -97.65 219.31
Unequal variance, single correlation 16 -89.06 210.13
EAMMCS
Fixed effects 0 -262.79 525.58
Equal variance, zero correlation 4 -116.50 241.00
Unequal variance, zero correlation 6 -104.50 221.00
Unequal variance, single correlation 7 -97.45 208.89
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treat all observations as independent. Both of these have 
important implications for the estimates obtained from 
these models.

First, the estimate of the fixed effect from Model 1 is 
rather nonsensical and uninterpretable because it ignores 
differences between experimental conditions and dependent 
variables. As a consequence, the estimate of the variance 

component is inflated relative to those of the multilevel mul-
tivariate meta-analytic model.

Second, and similarly, the estimates of the fixed effects from 
Model 2 (Model 3) are rather nonsensical and uninterpretable 
because they ignore differences between experimental condi-
tions and dependent variables (dependent variables). As a conse-
quence, the estimate of the variance component is inflated rela-
tive to those of the multilevel multivariate meta-analytic model.

Third, the estimates of the fixed effects from Model 
4 are reasonable and are not dissimilar to those of the 
multilevel multivariate meta-analytic model. However, 
because the basic random effects model has only a sin-
gle variance component parameter and thus assumes that 
there are only two levels in the nesting structure and equal-
ity across dependent variables, the Model 4 estimate of 
the variance component (i.e., 0.17) is rather nonsensical 
and uninterpretable because it ignores differences among 

Table 20  Choice overload unequal variance, single correlation EAMMCS model fixed effect estimates

Dependent variable & condition description Estimate Standard error

Confidence; unmoderated; assortment size small 7.19 0.26
Confidence; unmoderated; assortment size large 6.05 0.26
Confidence; decision goal low; assortment size small 5.27 0.17
Confidence; decision goal low; assortment size large 6.81 0.16
Confidence; decision goal high; assortment size small 5.74 0.16
Confidence; decision goal high; assortment size large 6.65 0.16
Confidence; decision task difficulty low; assortment size small 7.66 0.11
Confidence; decision task difficulty low; assortment size large 7.84 0.11
Confidence; decision task difficulty high; assortment size small 7.65 0.11
Confidence; decision task difficulty high; assortment size large 6.98 0.11
Regret; unmoderated; assortment size small 8.81 0.28
Regret; unmoderated; assortment size large 6.85 0.28
Regret; decision goal low; assortment size small 2.37 0.20
Regret; decision goal low; assortment size large 5.73 0.20
Regret; decision goal high; assortment size small 2.81 0.20
Regret; decision goal high; assortment size large 5.46 0.20
Regret; decision task difficulty low; assortment size small 7.96 0.18
Regret; decision task difficulty low; assortment size large 8.02 0.17
Regret; decision task difficulty high; assortment size small 8.19 0.18
Regret; decision task difficulty high; assortment size large 7.22 0.18
Satisfaction; unmoderated; assortment size small 7.78 0.65
Satisfaction; unmoderated; assortment size large 7.27 0.64
Satisfaction; decision goal low; assortment size small 5.39 0.35
Satisfaction; decision goal low; assortment size large 7.02 0.35
Satisfaction; decision goal high; assortment size small 5.84 0.35
Satisfaction; decision goal high; assortment size large 6.89 0.35
Satisfaction; decision task difficulty low; assortment size small 7.56 0.26
Satisfaction; decision task difficulty low; assortment size large 7.75 0.26
Satisfaction; decision task difficulty high; assortment size small 7.80 0.26
Satisfaction; decision task difficulty high; assortment size large 7.01 0.26

Table 21  Choice overload unequal variance, single correlation EAMMCS 
model variance component estimates

Dependent variable τ2 ρ  Level π
Estimate Estimate Estimate

Confidence 0.05 0.63 Paper 0.40
Regret 0.17 Study 0.32
Satisfaction 0.47 Group 0.18

Condition 0.10
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dependent variables; indeed, the multilevel multivariate 
meta-analytic model estimates indicate substantial differ-
ences among the dependent variables (i.e., 0.05 for confi-
dence, 0.17 for regret, and 0.47 for satisfaction). Further, 

Model 4 assumes that none of the variation is at the paper 
level, none is at the study level, none is at the group of 
subjects level, all is at the experimental condition level, 
and there is no covariation among the three dependent 

Table 22  Choice overload basic random effects model estimates

Model Dependent variable & condition description α τ2 

Estimate Standard error Estimate

Model 1 Not applicable 6.77 0.10 2.38
Model 2 Assortment size small 6.54 0.14 2.34

Assortment size large 7.00 0.14
Model 3 Unmoderated; assortment size small 8.20 0.35 0.65

Unmoderated; assortment size large 6.73 0.35
Decision goal low; assortment size small 4.07 0.18
Decision goal low; assortment size large 6.39 0.18
Decision goal high; assortment size small 4.43 0.18
Decision goal high; assortment size large 6.17 0.18
Decision task difficulty low; assortment size small 7.71 0.14
Decision task difficulty low; assortment size large 7.86 0.14
Decision task difficulty high; assortment size small 7.87 0.14
Decision task difficulty high; assortment size large 7.06 0.14

Model 4 Confidence; unmoderated; assortment size small 7.23 0.35 0.17
Confidence; unmoderated; assortment size large 6.09 0.35
Confidence; decision goal low; assortment size small 5.28 0.22
Confidence; decision goal low; assortment size large 6.80 0.21
Confidence; decision goal high; assortment size small 5.69 0.22
Confidence; decision goal high; assortment size large 6.59 0.22
Confidence; decision task difficulty low; assortment size small 7.60 0.13
Confidence; decision task difficulty low; assortment size large 7.85 0.13
Confidence; decision task difficulty high; assortment size small 7.64 0.13
Confidence; decision task difficulty high; assortment size large 6.99 0.13
Regret; unmoderated; assortment size small 8.89 0.28
Regret; unmoderated; assortment size large 6.89 0.28
Regret; decision goal low; assortment size small 2.38 0.15
Regret; decision goal low; assortment size large 5.71 0.15
Regret; decision goal high; assortment size small 2.78 0.15
Regret; decision goal high; assortment size large 5.41 0.15
Regret; decision task difficulty low; assortment size small 7.82 0.14
Regret; decision task difficulty low; assortment size large 7.82 0.14
Regret; decision task difficulty high; assortment size small 8.01 0.14
Regret; decision task difficulty high; assortment size large 7.03 0.14
Satisfaction; unmoderated; assortment size small 8.04 0.52
Satisfaction; unmoderated; assortment size large 7.52 0.50
Satisfaction; decision goal low; assortment size small 5.42 0.17
Satisfaction; decision goal low; assortment size large 7.00 0.17
Satisfaction; decision goal high; assortment size small 5.74 0.17
Satisfaction; decision goal high; assortment size large 6.87 0.17
Satisfaction; decision task difficulty low; assortment size small 7.70 0.13
Satisfaction; decision task difficulty low; assortment size large 7.90 0.13
Satisfaction; decision task difficulty high; assortment size small 7.95 0.13
Satisfaction; decision task difficulty high; assortment size large 7.14 0.13



2384 Behavior Research Methods (2023) 55:2367–2386

1 3

variables at any level; on the other hand, the multilevel 
multivariate meta-analytic model estimates indicate that 
40% of the variation is at the paper level, 32% is at the 
study level, 19% is at the group of subjects level, 10% is 
at the experimental condition level, and the covariation is 
substantial (i.e., correlated at 0.63).

Consequently, these basic random effects model variants 
are unsuitable for conducting statistical inference on the 
fixed effect parameters or linear combinations of them (e.g., 
the estimates of the standard errors of the estimates of the 
fixed effects for Model 4 are inflated relative to those of the 
multilevel multivariate meta-analytic model for confidence 
and deflated for regret and satisfaction and the estimates 
of the correlations of the estimates of the fixed effects for 
Model 4 are deflated relative to those of the multilevel mul-
tivariate meta-analytic model). Therefore, we conduct statis-
tical inference for such linear combinations—in particular, 
the simple effect of large versus small assortment sizes at 
each level of the moderator variables for each dependent 
variable and the assortment size × moderator variable inter-
action effect for each dependent variable—for only the mul-
tilevel multivariate meta-analytic model. Estimates, 95% CI 

estimates, estimates of the standard errors of the estimates, 
and z-statistics and p-values against the point null hypothesis 
of zero are presented in Tables 23 and 24, respectively. The 
estimates indicate that choice overload results for all three 
dependent variables in unmoderated studies and when the 
decision task difficulty moderator variable is set to the high 
level; however, it is reversed when the decision task dif-
ficulty moderator variable is set to the low level and when 
decision goal is the moderator variable. Further, the esti-
mates of the effects on confidence and satisfaction appear 
similar. Finally, the estimates of the interaction effects 
are consistently negative in line with the choice overload 
hypothesis.

Discussion

In this paper, we aimed to help overcome challenges so 
that multilevel multivariate meta-analytic models will be 
more often employed in practice. We did so by introducing 
MLMVmeta, an easy-to-use web application that imple-
ments multilevel multivariate meta-analytic methodology 

Table 23  Choice overload unequal variance, single correlation EAMMCS model simple effect estimates

Dependent variable & moderator variable level Estimate [95% CI] Standard error z-statistic p-value

Confidence; unmoderated -1.14 [-1.59,-0.69] 0.23 -4.98 < 0.001
Confidence; decision goal low 1.53 [1.24,1.83] 0.15 10.15 < 0.001
Confidence; decision goal high 0.91 [0.63,1.20] 0.15 6.22 < 0.001
Confidence; decision task difficulty low 0.18 [0.01,0.35] 0.09 2.09 0.036
Confidence; decision task difficulty high -0.67 [-0.85,-0.50] 0.09 -7.52 < 0.001
Regret; unmoderated -1.96 [-2.40,-1.52] 0.22 -8.74 < 0.001
Regret; decision goal low 3.36 [3.11,3.61] 0.13 26.68 < 0.001
Regret; decision goal high 2.65 [2.41,2.88] 0.12 22.09 < 0.001
Regret; decision task difficulty low 0.06 [-0.16,0.28] 0.11 0.55 0.584
Regret; decision Task difficulty high -0.97 [-1.19,-0.75] 0.11 -8.68 < 0.001
Satisfaction; unmoderated -0.50 [-1.38,0.37] 0.45 -1.13 0.259
Satisfaction; decision goal low 1.63 [1.27,1.99] 0.18 8.93 < 0.001
Satisfaction; decision goal high 1.05 [0.70,1.41] 0.18 5.77 < 0.001
Satisfaction; decision task difficulty low 0.19 [-0.08,0.45] 0.14 1.38 0.166
Satisfaction; decision task difficulty high -0.78 [-1.05,-0.52] 0.13 -5.89 < 0.001

Table 24  Choice overload EAMMCS unequal variance, single correlation model interaction effect estimates

Dependent variable & moderator variable Estimate [95% CI] Standard error z-statistic p-value

Confidence; decision goal -0.62 [-1.03,-0.21] 0.21 -2.94 < 0.001
Confidence; decision task difficulty -0.86 [-1.10,-0.61] 0.12 -6.87 < 0.001
Regret; decision goal -0.71 [-1.05,-0.37] 0.17 -4.09 < 0.001
Regret; decision task difficulty -1.03 [-1.34,-0.72] 0.16 -6.55 < 0.001
Satisfaction; decision goal -0.58 [-1.08,-0.07] 0.26 -2.24 0.025
Satisfaction; decision task difficulty -0.97 [-1.34,-0.60] 0.19 -5.12 < 0.001
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that is both specially tailored to contemporary psychologi-
cal research and easily estimable, interpretable, and parsi-
monious. We are optimistic that MLMVmeta will facilitate 
the use of multilevel multivariate meta-analytic models in 
practice.

Appendix 

To reproduce the results reported in the case studies using 
MLMVmeta, first click the “Examples” tab and download 
the data. Next, click the “Input” tab and load the principal 
data (for all three case studies) and the sampling variance-
covariance matrix (for the second and third case studies). 
Then, click the “Click to Estimate Model” button. It is 
important to wait until the data has fully loaded before click-
ing this button; completion of loading is indicated by the fact 
that the principal data and, when applicable, the sampling 
variance-covariance matrix appear in the main panel of the 
tab.

After the progress bar indicates that estimation is com-
plete, results can be obtained by clicking the “Results” tab. 
This tab provides the number of variance component param-
eters estimated by, the REML LL of, and the AIC of each 
of the model specifications as well as the estimates from 
all model specifications. These results may be downloaded 
as an .RData file by scrolling to the bottom of the tab and 
clicking the link.

To analyze other data using MLMVmeta, users must 
prepare the principal data and optionally the sampling var-
iance-covariance matrix (e.g., as a .csv file). The first two 
columns to appear in the principal data file must be titled 
ConditionDescription and DependentVariable; these col-
umns respectively provide the experimental condition and 
dependent variable for each observation (when there are 
no experimental conditions, the entries in this column can 
simply be “Not Applicable”). Next, one or more columns 
that provide the identity of each observation at each level of 
the nesting structure may optionally appear in the principal 
data file. The next two columns to appear in the principal 
data file must be titled y and v; the former provides a single 
statistic that summarizes individual-level data associated 
with each observation and the latter provides an estimate of 
the sampling variance of the statistic. Finally, one or more 
columns that provide covariates for each observation may 
optionally appear in the principal data file. The sampling 
variance-covariance matrix provides (typically an estimate 
of) the sampling variance-covariance matrix of y; it is, as 
noted, optional to prepare this matrix but it is recommended 
to do so when the covariances are nonzero.

In addition to the unconstrained MMCS model 
specification parameterized by the �2

k,d
 and �k,d,d′ where  

k ∈{2,...,K} and d, d� ∈ {1, ...,D} and discussed in the section 

entitled “Multilevel multivariate model specification,” 
MLMVmeta implements several simplifications: a fixed 
effects specification that sets the �2

k,d
= 0 for all k and d 

such that the �k,d,d′ are irrelevant; an equal variance, zero 
correlation specification that sets the �2

k,d
= �2

k
 for all d 

and the �k,d,d� = 0 for all k and d ≠ d′ ; an equal variance, 
single correlation specification that sets the �2

k,d
= �2

k
 for 

all d and the �k,d,d� = �k for all d ≠ d′ ; an unequal variance, 
zero correlation specification that sets the �k,d,d� = 0 for all 
k and d ≠ d′ ; and an unequal variance, single correlation 
specification that sets the �k,d,d� = �k for all d ≠ d′.

In addition to the unconstrained EAMMCS model 
specification parameterized by the �2

d
 , �d,d′ , and πk where 

d, d� ∈ {1, ...,D} and k ∈{2,...,K} and discussed in Case 
Study 2, MLMVmeta implements several simplifications: 
a fixed effects specification that sets the �2

d
= 0 for all d 

such that the �d,d′ and πk are irrelevant; an equal variance, 
zero correlation specification that sets the �2

d
= �2 for all 

d and the �d,d� = 0 for all d ≠ d′ ; an equal variance, single 
correlation specification that sets the �2

d
= �2 for all d and 

the �d,d� = � for all d ≠ d′ ; an unequal variance, zero cor-
relation specification that sets the �d,d� = 0 for all d ≠ d′ ; 
and an unequal variance, single correlation specification 
that sets the �d,d� = � for all d ≠ d′.

We note that (i) all model specifications other than 
the fixed effects ones are equivalent when the number 
of dependent variables is equal to one; (ii) MMCS and 
EAMMCS model specifications are equivalent when the 
number of dependent variables is equal to one, when the 
number of levels is equal to two, for the fixed effects model 
specifications, and for the equal variance, zero correlation 
model specifications; (iii) the unconstrained model speci-
fications are estimated only when the number of dependent 
variables is equal to one or when the number of levels is 
less than or equal to three; and (iv) only the unconstrained 
MMCS model specification allows negative correlations. 
We also note that only EAMMCS model specifications are 
estimated by default; MMCS model specifications may be 
estimated at the discretion of the user but require more time 
for estimation. We finally note that the MMCS equal vari-
ance, single correlation model specification; the MMCS 
unequal variance, single correlation model specification; 
and the EAMMCS equal variance, single correlation model 
specification are novel relative to McShane and Böckenholt 
(2018).

MLMVmeta does not accommodate differences in the 
scales used for a given dependent variable across studies; 
when studies use different scales for a given dependent 
variable, conversion to a common scale (heeding the cau-
tions discussed in Case Study 2 Revisited) prior to analysis 
is necessary. MLMVmeta does accommodate differences 
in the scales used for different dependent variables; how-
ever, equal variance model specifications may be rather 
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nonsensical and perform poorly when there are such dif-
ferences. Finally, dependent variables should be reverse-
coded as necessary for consistency with one another prior 
to analysis; otherwise, single correlation model specifica-
tions and the unconstrained EAMMCS model specification 
(which allow only nonnegative correlations) may be rather 
nonsensical and perform poorly.
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