
Exploring a New Method for
Classification with Local Time Dependence

Blakeley B. McShane1

Abstract

We have developed a sophisticated new statistical methodology which allows machine

learning methods to model time series data. The methodology builds upon recent advances

in machine learning, specifically random forests, combined with hidden Markov models to

account for local time-dependence. We evaluate the properties of our model via a careful

simulation study.

1 Introduction

Conventional machine learning methods such as AdaBoost (Freund and Schapire, 1996) have
proven extremely successful at the task of classification on a wide variety of problems. These
methods are so successful because they focus on minimizing classification error. As a conse-
quence, these algorithms are very powerful, but they are also limited. For example, they assume
i.i.d data which can be inappropriate if the states are correlated across time. Moreover, while often
giving good class estimates, their conditional class probability estimates are often overfit, tending
towards zero or one (Mease et al., 2007). In addition, they focus on a uniform loss function over
misclassifications. Finally, many of these algorithms were developed for the binary classification
setting and do not naturally accommodate a multi-class setting.

While more recent methods such as random forests (Breiman, 2001) overcome some of these
limitations, conventional methods still can fail when, for example, there is one state that is very
rare and where there is temporal structure in the data. These unfortunate features are prevalent in
the problem that served as the motivation for this research (automated scoring of sleep states into
three states (REM, NREM, and WAKE) based on covariates culled from video data). In this paper,
we focus on the time series issue and solve it by blending machine learning methods with a hidden
Markov model. Our focus is on describing the method and investigating various properties of the
model through a careful simulation study, though we provide a brief description of the motivation
for the method.

1Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104
mcshaneb@wharton.upenn.edu

1

2 Motivating Problem

The state-of-the-art, gold standard methodology for the study of sleep behavior is invasive, expen-
sive, and time-consuming. First, a wire which captures E.E.G. and E.M.G. signals is implanted into
a mouse’s head. Then, researchers must wait ten to fourteen days during which the mouse recovers
from the surgery. Next, they track the E.E.G. and E.M.G. signals for twenty-four hours. They then
break up the day into 8,640 epochs, each ten seconds in length. Finally, these epochs are man-
ually classified into three sleep stages: REM sleep, Non-REM sleep, and awake. An automated,
algorithmic system therefore has the potential to be advantageous on many practical levels.

The method described in this paper has been used to predict the sleep state of mice based on
video data2. We record the mice at ten frames per second and convert the video to numeric data
by a computer program that tracks the mouse in each frame of the video. The tracking program
calculate variouss summary statistics for each frame (velocity, aspect ratio, and size of the mouse)
and we use the intra-epoch means and standard deviations of the three summary statistics over the
100 frames within each epoch as our covariates. We also include covariate which indicates whether
light in the mouses cage was turned on (7:00AM - 7:00PM) or not since light has a substantial effect
on a mouses sleep behavior.

Our method, described and investigated in detail below, performs sufficiently well that sleep
researchers are now using it in lieu of manual scoring in several important applications. By using
covariates culled from video data, we have saved sleep researchers vast sums of time and money
by avoiding the difficult implantation procedure in addition to the obvious savings from replacing
the manual scoring process with an automated one. An additional benefit of automation is that it
allows high throughput, large sample studies which were previously prohibitive.

3 Methodology

3.1 Our Method

Suppose we observe a process as in Figure 1. In the first part, we observe (potentially with error)
the response {Yt} as well as (potentially multivariate) covariates {Xt}. In the second part, we
observe only the covariates. Let {Yt} take on values in S = {S1, ..., SN} and furthermore assume
{Yt} is a time-homogeneous first order Markov Chain. Also, assume there are N probability
measures µi where µi(x) = P(Xt = x|Yt = Si). Finally, assume an initial state distribution π
where πi = P(Y1 = Si).

This structure is very similar to a hidden Markov model (Rabiner, 1989). In this setting one

2For more details on the application, see McShane et al. (2009)

2

Y1=s1

X1

Y2=s2

X2

YT=sT

XT

…

YT+1 =

sT+1

XT+1

YT+2 =

sT+2

XT+2

…

In Sample Time: {Yt,Xt} observed Out of Sample Time: {Xt} observed

Figure 1: Sample Data Structure.

needs to estimate three things, the initial state distribution π, the transition probability matrix
A = aij where aij = P(Yt = Sj|Yt−1 = Si), and the probability measures µ governing the
covariates.

While estimation of the first two is fairly straightforward (e.g., use empirical frequencies),
estimation of the N probability measures µi can be extremely difficult, particularly when Xt is
high dimensional and the signal is complicated. Machine learning methods thrive in such settings
but are meant for univariate, categorical responses. We can use Bayes’ Theorem to transform the
problem:

µi(x) = P(Xt = x|Yt = Si)

=

Machine Learning︷ ︸︸ ︷
P(Yt = Si|Xt = x)

Normalizing Constant︷ ︸︸ ︷
P(Xt = x)

P(Yt = Si)︸ ︷︷ ︸
Empirical Frequency

We can use machine learning methods to estimate the first term in the numerator and we can
ignore the second term. The denominator can be estimated by empirical frequencies as we did for
the initial state distribution and the transition probability matrix.

Thus, we have transformed the problem of estimating N multi-dimensional probability den-
sity functions into a problem of estimating an N -dimensional probability vector conditional on
covariates and N marginal probabilities. That is, our task has shifted from estimating (π̂, Â, µ̂) to
estimating (π̂, Â, f̂ , m̂) where fi(xt) = P(Yt = Si|Xt = xt) and mi = P(Yt = Si)

3

A ”naive” machine learners are limited in this setting because they can, at best, estimate fi.
We can do better if there is time series dependence because we can estimate γt(i) ≡ P(Yt =

Si|X1, X2, ..., XT).

3mi is the marginal state probability of the first out of sample datapoint in contrast to πi which is the marginal
probability of any datapoint. In the case that out of sample forecast begins at a random point, the distribution m is
equivalent to the distribution π and therefore one can set m̂ = π̂. In the case that the out of sample forecast continues
on from some known point, as is illustrated in Figure 1, the distributionm comes from the transition probability matrix
A and therefore one can set m̂ equal to the appropriate row of Â.

3

The main idea, turning a generative HMM problem into a discriminative problem, has been
considered before (Smyth, 1994). However, it has typically been applied in settings with a much
higher signal to noise ratio and less frequent transitions, both of which make overfit estimates of
the conditional class probability function less problematic. In these settings, combining machine
learning methods with an HMM model for time dependency serves mostly to locally smooth out
probability estimates. However, in a noisy setting such as our sleep application, overfit estimates of
the conditional class probabilities by the base method can cause insensitivity to the remaining time
series dependency in the data. In addition, in our setting, the Markovian parameters are unknown
and therefore must be estimated from the data.

3.2 Estimation and Calculation

Estimating each component of M̂ = (π̂, Â, f̂ , m̂) is straightforward. However, γt(i) is a very
complicated function so calculating it conditional on M̂ seems more difficult. Fortunately, we can
make use of a modification of the forward backward algorithm commonly used in hidden Markov
models (Rabiner, 1989) to do so.

First, define αt(i) = P(X1 = x1, X2 = x2, ..., Xt = xt, Yt = Si|M̂). Then, we can solve for
these inductively as follows:

1. Intialization: α1(i) = π̂i
f̂i(x1)

m̂i
, 1 ≤ i ≤ N

2. Induction: αt+1(j) =
[∑N

i=1 αt(i)âij

]
f̂j(xt+1)

m̂j
,

1 ≤ t ≤ T − 1; 1 ≤ j ≤ N

3. Termination: P(X1 = x1, X2 = x2, ..., XT = xt|M̂) =
∑N

i=1 αT (i).

Next, define βt(i) = P(Xt+1 = xt+1, ..., XT = xT |Yt = Si, M̂). Again, we can solve for these
inductively as follows:

1. Intialization: βT (i) = 1, 1 ≤ i ≤ N

2. Induction: βt(i) =
∑N

j=1 âijβt+1(j)
f̂j(xt+1)

m̂j
,

t = T − 1, T − 2, ..., 1; 1 ≤ i ≤ N

Finally, we can recover P(Yt = Si|X1, X2, ..., XT , M̂) as follows:

αt(i)βt(i) = P(X1, X2, ..., Xt, Yt = Si|M̂) · P(Xt+1, ..., XT |Yt = Si, M̂)

= P(Yt = Si|M̂) · P(X1, X2, ..., Xt|Yt = Si, M̂) · P(Xt+1, ..., XT |Yt = Si, M̂)

= P(Yt = Si|M̂) · P(X1, X2, ..., XT |Yt = Si, M̂)

= P(Yt = Si|X1, ..., XT , M̂) · P(X1, X2, ..., XT |M̂)︸ ︷︷ ︸
Normalizing Constant

4

Therefore,

P(Yt = Si|X1, ..., XT , M̂) =
αt(i)βt(i)∑N

j=1 αt(j)βt(j)
≡ γt(i).

If we want to classify Yt at times t = 1, 2, ..., T given X1, X2, ..., XT , we have two options:

• Modal Sequence: At each t, we choose Ŷt to be the state that has the maximum probability
conditional on the full set of covariates: Ŷt = arg maxi γt(i). That is, we choose the most
likely state on a time period by time period basis.

• Viterbi Sequence: We can use the Viterbi Algorithm to find the single best sequence, that is
the {Ŷ1, ..., ŶT} such that P(Ŷ1, ..., ŶT |X1, ..., XT) is maximized.

When classification error is the loss function, the Modal Sequence performs best. Under other loss
functions, the Viterbi Sequence (or some other sequence) could be optimal. However, since our
focus is on probability estimation, we often use the γt(i) directly.

3.3 Summary

In the setting we have described, P(Yt|Y1, ..., Yt−1, Yt+1, ..., YT , X1, ..., XT) is equivalent to P(Yt|Yt−1, Yt+1, Xt).
If Yt−1 and Yt+1 were known, naive machine learning algorithms would work by augmenting the
covariates: X̃t = {Xt, Yt−1, Yt+1}. Since the {Yt−1} and {Yt+1} are unknown, we must go with the
next best thing: P(Yt|X1, ..., XT). A naive machine learner would have to augment the covariates
to be X̃t = {..., Xt−1, Xt, Xt+1, ...}. This is infeasible since Xt is already high dimensional. Our
method allows the machine learner to calculate P(Yt|X1, ..., XT) while only fitting on Xt.

In sum, our methodology takes a machine learning algorithm as an input and returns an en-
hanced version of that algorithm which accounts for time series dependence. That is, we fit on
Yt|Xt but get Yt|X1, ...XT . The alternatives to our model are not as good:

• Use Yt|Xt thereby ignoring the time series structure.

• Augment the covariates X̃t = {..., Xt−1, Xt, Xt+1, ...} but face the curse of dimensionality
when trying to estimate Yt|X̃t.

• Try and estimate the measures {µi}Ni=1, an extremely difficult task for multidimensional Xt.

4 Simulations

We provide two simulations to show how our model compares to various competitors and compared
to the truth. We repeat each simulation 1,000 times and average the results over these repetitions.

5

0.
00

0.
05

0.
10

0.
15

T[train] = 100

Out of Sample Time
T+10 T+30 T+50 0.

00
0.

05
0.

10
0.

15

T[train] = 1000

Out of Sample Time
T+10 T+30 T+50 0.

00
0.

05
0.

10
0.

15

T[train] = 10000

Out of Sample Time
T+10 T+30 T+50

LR LR+HMM Simple Bayes

Figure 2: Classification Error Relative to Full Bayes Classifier

We are interested in how well the model estimates the true classes but also how well it recovers
the true probabilities. In this setting, there are two Bayes rules to consider. The first one is the
simple Bayes rule commonly used in machine learning, P(Yt = Ti|Xt = xt). Due to the time
series dependence, this decision rule can be beat. The other Bayes Rule is the full Bayes rule,
P(Yt = Ti|X1 = x1, ..., XT = xT). This rule gives the true conditional probabilities and hence it
cannot be beat.

4.1 Simulation I

The first simulation is extremely straightforward and is meant more as an illustration of the method

than as a realistic example. In this case, S = {0, 1}, π = {.5, .5} and A =

(
.8 .2

.3 .7

)
. Finally,

P(X|Yt = i) ∼ N(µ = Yt, σ = .5). We set the training sample size to 100, 1,000, and 10,000.
Since the covariate is univariate and the decision boundary is linear, we use logistic regression

as our ”machine learning method” since many machine learning methods behave strangely in one
dimension (e.g., AdaBoost becomes one-nearest neighbor).

As can be seen from examining Figure 2, logistic regression with the HMM adaptation repli-
cates the full Bayes rule for classification (i.e., zero error). On the other hand, plain logistic regres-
sion is imitating the simple Bayes rule which can be improved upon in this setting. Since the time
series structure resembles that of Figure 1, there is substantial information contained in the value of
the last in-sample datapoint YT , data which is ignored by logistic regression and the simple Bayes
rule which do not take it into account. Thus, they tend to perform worse initially and improve as

6

0.
00

0.
01

0.
02

0.
03

0.
04

T[train] = 100

Out of Sample Time
T+10 T+30 T+50 0.

00
0.

01
0.

02
0.

03
0.

04

T[train] = 1000

Out of Sample Time
T+10 T+30 T+50 0.

00
0.

01
0.

02
0.

03
0.

04

T[train] = 10000

Out of Sample Time
T+10 T+30 T+50

LR LR+HMM Simple Bayes

Figure 3: Squared Probability Error Relative to Full Bayes Probabilities.

the value of conditioning on YT diminishes over time.
Since we are interested in probability estimates as well as classifications, we plot in Figure 3 the

squared difference in probabilities between the three models and the full Bayes rule4. With enough
training points, logistic regression with the HMM adaptation replicates the probability estimates
of the full Bayes rule. Likewise, plain logistic regression is imitating the simple Bayes rule.

In sum, the simple Bayes rule and logistic regression perform poorly since they do not take
into account the time series nature of the data. On the other hand, our model–logistic regression
augmented with the HMM–replicates both the class estimates and the probability estimates of the
full Bayes rule. This fact, as will be seen next, is highly dependent on how well the machine
learning method estimates P(Yt = Si|Xt = xt) (i.e., f̂(x)). We will see in the next simulation that
overfit estimates of f̂ will cause the classifications produced by our model to be the same as the
base model and cause the probability estimates to be poor.

4.2 Simulation II

In the second simulation, we again set S = {0, 1}, π = {.5, .5} and A =

(
.8 .2

.3 .7

)
. This

time, however, the distributions µi are much more complicated. We let {Xt} be a 10-dimensional
vector. Eight of these dimensions are Unif(0, 1) noise dimensions. The two dimensions with
signal are distributed according to the patterns in Figures 4. We set the sample size progressively

4In addition to squared error loss, we also considered negative log likelihood loss, exponential loss, and Kullback-
Leibler Divergence. Qualitatively, the same patterns held for all four measures.

7

Increasing Sample Size

In
cr

ea
si

ng
 N

oi
se

 L
ev

el

0.0 0.4 0.80.
0

0.
4

0.
8

T[train] = 100

0.0 0.4 0.8

0.
0

0.
4

0.
8

T[train] = 1000

0.0 0.4 0.8

0.
0

0.
4

0.
8

T[train] = 10000

0.0 0.4 0.80.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.80.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

Increasing Sample Size

In
cr

ea
si

ng
 N

oi
se

 L
ev

el

0.0 0.4 0.80.
0

0.
4

0.
8

T[train] = 100

0.0 0.4 0.8

0.
0

0.
4

0.
8

T[train] = 1000

0.0 0.4 0.8

0.
0

0.
4

0.
8

T[train] = 10000

0.0 0.4 0.80.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

Figure 4: The left panel gives the distribution of X(1,2) given Y = 0 for the nine simulated scenar-
ios. The right panel gives the distribution of X(1,2) given Y = 1.

to 100, 1,000, and 10,000 and consider three progressively more difficult settings. We also use
three machine learning methods as our base algorithm: logistic regression, AdaBoost, and random
forests.

Before showing the results of the simulation, we want touch on how the machine learning
methods should perform and what should happen in each of the nine cells. First, we expect logistic
regression to perform poorly (at both classification and probability estimation) since it is a linear
method and the data is clearly non-linear. We expect AdaBoost to perform well on classification
but poor on probability estimation since it tends to overfit on probabilities. Finally, we expect
random forests to perform the best.

For the three cells of Figure 4 with training data size equal to 100, we really do not expect any
algorithm to perform well. The structure is simply too complicated for effective learning in that
environment. Furthermore, for the low noise setting, we expect the enhanced versions of the base
algorithms will not perform much better than the base algorithms themselves. That is because in
the low noise setting, the data pattern is so stark that incorporating time series effects does not add
much. Similarly, though for an opposite reason, we do not expect to perform much better than the
base models in the high noise setting. This is because there is so much noise that it is hard to beat
a model which predicts the more frequent class every time.

Hence, the ”sweet spot” for our model is the medium noise middle row of each panel of Fig-
ure 4, particularly the second and third cells of the middle row where there is sufficient data for

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 100

Out of Sample Time

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ●
● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 1000

Out of Sample Time

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 10000

Out of Sample Time

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

● ●LR LR+HMM RF RF+HMM AB AB+HMM Simple Bayes

Figure 5: Classification Error Relative to Full Bayes Classifier For Medium Noise Setting.

estimation. As a consequence, we focus on the results for this row 5.
Figure 5 gives the classifications produced by our various models as compared to those pro-

duced by the full Bayes rule. Not surprisingly, all methods except the simple Bayes rule perform
pretty poorly in the first plot where the training set is 100: there is simply not enough data for these
methods to learn the complicated structure of Figure 4 as well as the time series structure. The
simple Bayes rule, however, performs reasonably well which is not all that surprising when one
considers that this rule knows the true structure of Figures 4, a complex structure which the other
methods must learn.

As the training set size increases, we see that the classification error for AdaBoost and random
forests begins to approach that of the simple Bayes rule. Moreover, since there is sufficient data
to learn the time series structure, the versions of AdaBoost and random forests with the HMM
perform better than the base models. Surprisingly, however, even with the HMM, these methods
cannot beat the simple Bayes rule: complete knowledge of the complex conditional data structure
of Figures 4 is simply very hard to beat.

Figure 6 gives the squared probability error for each method relative to the Full Bayes proba-
bilities. Again, all methods with the exception of the simple Bayes rule are quite poor when the
training set is of size 100 (AdaBoost is so poor at probability estimation that its squared error is
off the charts for the first two plots). The simple Bayes rule performs well because knows the
complicated structure and for our choice of simulation parameters P(Yt = Si|Xt = xt) is not all
that different from P(Yt = Si|X1 = x1, ..., XT = xT).

5The results for the other two rows can be found in the Appendix.

9

0.
00

0.
04

0.
08

0.
12

T[train] = 100

Out of Sample Time

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50 0.
00

0.
04

0.
08

0.
12

T[train] = 1000

Out of Sample Time

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50 0.
00

0.
04

0.
08

0.
12

T[train] = 10000

Out of Sample Time

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

● ●LR LR+HMM RF RF+HMM AB AB+HMM Simple Bayes

Figure 6: Squared Probability Error Relative to Full Bayes Probabilities For Medium Noise Setting.
AdaBoost does not appear in some plots because it performs poorly relative to the other methods.

However, with increasing data, it is clear that adding the HMM does indeed improve the prob-
ability estimates of the base models (except logistic regression whose estimates are so poor that we
cannot improve them much). In fact, the random forest performs so strongly with sufficient data
that the HMM allows it to beat out even the simple Bayes rule, an impressive feat.

In conclusion, we see that logistic regression performs horribly because it cannot fit the func-
tion. The HMM helps slightly in the early portion of the hold-out sample, however. AdaBoost
performs more or less the same regardless of whether or not the HMM is used. This is because
AdaBoost produces probability estimates which tend to zero or one, causing insensitivity to the
HMM. As a consequence, AdaBoost does well on the classification task but poorly on the proba-
bility estimation task. Random forests with the HMM performs very well.

The simple Bayes rule is hard to beat because the data structure is very complicated. In such
settings, the true P(Yt = Si|Xt) can beat estimates P̂(Yt = Si|X1, ..., XT). However, we must
keep in mind that the simple Bayes rule is not a realistic competitor because it can never be known
in real settings. The fact that our model beats it in some settings and is comparable in many others
is quite impressive.

5 Discussion

In conclusion, we have developed a methodology which takes a machine learning method as an in-
put and returns a machine learning method which accounts for time series structure. This method-

10

ology performed extremely well in various simulations, even matching the full Bayes rule in some
settings.

There are two apparent limitations to our model. In difficult settings, where it is hard to de-
termine P(Yt = Si|Xt = xt), our method performs less well even though it still beats all realistic
competitors. This suggests our model is very sensitive to the quality of the input machine learning
method which produces the estimates of P(Yt = Si|Xt = xt). Further confirmation of this comes
from the fact that AdaBoost, known for producing estimates of P(Yt = Si|Xt = xt) that are close
to zero or one, is insensitive to our method in some cases. Another limitation of our model is the
first order Markov chain assumption. While first order Markov chains form a rich class and though
they are able to approximate a much more general time series dependence structures, there is room
for improvement. In particular, the Geometric holding time distribution implied by a first order
Markov chain seem unrealistic in many situations. Thus, future research should proceed in two
ways: (i) producing better machine learning probability estimates P(Yt = Si|Xt = xt) and (ii)
relaxing the first order Markov chain assumption.

As for the first, a theoretical improvement in classification technologies would be of general
benefit to all machine learning algorithms and is not specific to our method. As mentioned above,
most state-of-the-art classification tools are very good at classifying the most likely state but they
are not so good at giving the probabilities of all the states. While random forests is noted for
giving reasonably accurate probability estimates, the estimates seem to be unsatisfactory for some
datasets. Namely, the probabilities are not appropriately calibrated: when the model says the
mouse should be in a given state with probability p, the empirical frequency that it is in that state is
not p. Improving the probability estimates would obviously improve our classifications. Moreover,
they would make the hidden Markov models more competitive as those probability estimates enter
directly into the Markov Model.

Regarding the second improvement suggested above, it is specific to our method: while many
non-Markovian processes can be approximated by a Markov model, it would be useful to accom-
modate even more general dependence structures. Second, third, and higher order Markov Chains
are a natural generalization; in fact, these can be implemented with minor variations to the current
algorithm. Furthermore, we are currently implementing a generalized hidden Markov model to
capture the time dependencies in the data. A GHMM is like an HMM except (i) each state has
its own arbitrary holding time distribution (as opposed to the Geometric distribution implied by
an HMM) and (ii) self-transitions are not allowed (since they are accounted for by the arbitrary
holding time distribution). Another variant we are working on is a Variable Length hidden Markov
model (a higher order Markov model with variable memory length, the length of which depends
on the sequence of previous states).

In sum, our method is very general, can fit a wide class of problems, and will perform better

11

than conventional machine learning methods in the presence of time series dependence. When
the conditional class probability function can be described by the base machine learning method
and sufficient training data is provided, our method recovers the true probabilities and provides
superior classifications when compared to other methods. This is critical given the prevalence
of categorical time series in applications (e.g., the motivating example of sleep, signal failure
detection, part of speech tagging, etc.). Ongoing research seeks to make further improvements to
our sequential classification method through general improvements to machine learning algorithms
and by accommodating even more general time dependence structures.

References

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.

Freund, Y. and Schapire, R. (1996). Experiments with a new boosting algorithm. In Machine

Learning: Proceedings of the Thirteenth International Conference, 148–156.

McShane, B. B., Jensen, S. T., and Wyner, A. J. (2009). Statistical learning methods for modeling
sleep in mice. Tech. rep., Department of Statistics, University of Pennsylvania.

Mease, D., Wyner, A., and Buja, A. (2007). Boosted classification trees and class probabil-
ity/quantile estimation. Journal of Machine Learning Research 8, 409–439.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE 77, 257–286.

Smyth, P. (1994). Markov monitoring with unknown states. IEEE Journal of Selected Areas in

Communications, Special Issue on Intelligent Signal Processing for Communications 12, 1600–
1612.

12

A Results for Low Noise Setting of Simulation II

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 100

Out of Sample Time

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 1000

Out of Sample Time

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 10000

Out of Sample Time

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

● ●LR LR+HMM RF RF+HMM AB AB+HMM Simple Bayes

Figure 7: Classification Error Relative to Full Bayes Probabilities For Low Noise Setting.

0.
00

0.
05

0.
10

0.
15

0.
20

T[train] = 100

Out of Sample Time

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50 0.
00

0.
05

0.
10

0.
15

0.
20

T[train] = 1000

Out of Sample Time

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50 0.
00

0.
05

0.
10

0.
15

0.
20

T[train] = 10000

Out of Sample Time

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

● ●LR LR+HMM RF RF+HMM AB AB+HMM Simple Bayes

Figure 8: Squared Probability Error Relative to Full Bayes Probabilities For Low Noise Setting.
AdaBoost does not appear in some plots because it performs poorly relative to the other methods.

13

B Results for High Noise Setting of Simulation II

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 100

Out of Sample Time

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 1000

Out of Sample Time

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T[train] = 10000

Out of Sample Time

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

● ●LR LR+HMM RF RF+HMM AB AB+HMM Simple Bayes

Figure 9: Classification Error Relative to Full Bayes Probabilities For High Noise Setting.

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

T[train] = 100

Out of Sample Time

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50 0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

T[train] = 1000

Out of Sample Time

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50 0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

T[train] = 10000

Out of Sample Time

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

T+10 T+30 T+50

● ●LR LR+HMM RF RF+HMM AB AB+HMM Simple Bayes

Figure 10: Squared Probability Error Relative to Full Bayes Probabilities For Low Noise Setting.
AdaBoost does not appear in some plots because it performs poorly relative to the other methods.

14

