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Rejoinder
Blakeley B. MCSHANE, Shane T. JENSEN, Allan I. PACK, and Abraham J. WYNER

We warmly thank editors Hal Stern and Joseph Ibrahim for
selecting our article (McShane et al. 2013) for discussion. We
are grateful for the opportunity to receive feedback on our work
from discussants who possess a tremendous breadth of knowl-
edge and expertise and we thank them for the great deal of time
and effort they put into contemplating and responding to our
article. Their careful and considered comments serve not only
to further elucidate our findings but also to educe additional re-
search questions. It is thus our hope that our humble article and
the ensuing discussion will serve as a springboard for us and for
other scholars.

In this rejoinder, we aim to do three things. First, we introduce
a new simulation that is based on our mouse data. This new
simulation, motivated by the discussion, helps us achieve our
second aim, namely providing an in-depth response to each of
the discussants. Finally, we introduce some additional findings
that shed further light on model performance.

In the text that follows, we abbreviate the two discussions as
KS (Shedden 2013) and ZW (Zeng and Wang 2013).

1. MOUSE SIMULATION

The simple simulation of Section 3 of our article was the
focus of the discussion by KS. In order both to respond to
several of his noteworthy points and to support some additional
findings of our own, we propose a more complicated simulation
that is based on our mouse data and thus better reflects the
key features of our applied setting. In particular, we use our
mouse data to estimate the parameters of a transition-dependent
generalized Markov model (TDGMM) and then simulate data
from a TDGMM conditional on these parameter values.

The mouse simulation state space S = {NREM, REM,

WAKE} is the mouse data state space, the initialization dis-
tribution π is the observed marginal distribution of the mouse
data, the transition probability distributions A are the observed
transition probabilities of the mouse data, and the transition-
dependent duration distributions δ are beta-negative binomial
with geometric tail fit to the observed mouse data and plotted in
Figure 1 (Q–Q plots showing the fit of the estimated duration
distributions to the mouse data appear in Figure 4 of the online
supplementary materials of our article). The covariate emis-
sion distributions μ are multivariate normal with state-specific
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b-mcshane@kellogg.northwestern.edu). Shane T. Jensen is Associate Profes-
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(E-mail: stjensen@wharton.upenn.edu). Allan I. Pack is John Miclot Profes-
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nia, Philadelphia, PA 19104 (E-mail: pack@mail.med.upenn.edu). Abraham J.
Wyner is Professor, The Wharton School, University of Pennsylvania, Philadel-
phia, PA 19104 (E-mail: ajw@wharton.upenn.edu).

means and a common covariance matrix; this choice of distri-
bution results in a linear decision boundary and is fit to the
observed mouse data for the six continuous covariates omitting,
for obvious reasons, the powerful binary covariate that indicated
whether or not the light in the mouse cage was on in epoch t. Full
details of simulation parameters are provided in the Appendix.

Our study uses three different training set sizes (T = 2160,
T = 8640, and T = 34,560 which are, respectively, one-fourth
of the actual number of epochs observed for a given mouse, the
actual number of epochs observed for a given mouse, and four
times the actual number of epochs observed for a given mouse).
The test set size is always fixed at T � = 200 (our results are
not sensitive to this choice) and the test data “continue” from
the training data as in Figure 4 of our article. All results are
averaged over 1000 replicates of the simulation.

As in our article, we evaluate model performance in three
ways: classification error, classification error relative to the
Bayes’ Rule, and the root mean square error of the probabil-
ity estimates.

2. RESPONSE TO KS

KS notes that aspects of the joint distribution P (Y 1:T , X1:T )
may be difficult to estimate while having little influence on pre-
diction. This fact is of critical importance and we are remiss for
not having emphasized it sufficiently in our article. We thank
KS for having called attention to it. Nonetheless, since in our
principal model we take a discriminative rather than a genera-
tive approach, we believe we focus on the exact aspects of the
distribution most relevant for prediction.

We found the windowed multinomial logistic regression
(WMLR) approach proposed by KS intriguing and we were grat-
ified to see that our model-based TDGMM approach stood up
in the additional simulations conducted by him. In fact, WMLR
was the first model we employed on our mouse data. This ap-
proach did not yield satisfactory predictive power thus motivat-
ing our first-order Markov model (1MM), generalized Markov
model (GMM), and TDGMM approaches.

To examine the performance of the WMLR approach relative
to alternative model choices, we compare the performance of
several models on the mouse simulation. The models we con-
sider are (i) multinomial logistic regression (MLR), (ii) MLR
enhanced by a 1MM (MLR+1MM), (iii) MLR enhanced by
a TDGMM (MLR+TDGMM), and (iv) WMLR(w), that is,
WMLR with window size w; we let w range from zero to five as
in KS Figure 1 and note that WMLR(0) is simply MLR. The root
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Figure 1. Transition-dependent duration distributions for the mouse simulation. We estimate a beta-negative binomial distribution with
geometric tail for each conditional distribution using the procedure outlined in the online supplementary materials of our article. We plot
distributions so that over 99% of the total mass appears in the plots and extend the plots so that 25 epochs at minimum appear on the x-axis. The
dashed vertical lines separate the“head” and “tail” of the distributions.

mean square errors of the probability estimates (i.e., relative to
the Bayes’ Rule which uses the true probabilities, P (Yt |X�,�))
of each of the various models for each of the three training set
sizes are plotted in Figure 2. As can be seen, the gains in perfor-
mance for WMLR asymptote in w relatively quickly despite the
longer-term patterns of time dependence indicated in Figure 1.
Further, MLR+1MM dramatically outperforms WMLR—even
for relatively high values of w; this is particularly notable

because, while both are incorrectly specified, the latter (i) makes
use of (K − 1) · (1 + p + 2wp) coefficients, where K = 3 is
the size of the state space and p = 6 is the number of covariates
and (ii) can capture longer-term patterns of time dependence.
Finally, it is clear that the MLR+TDGMM approach is
dominant.

Abstracting from our data setting, we are concerned about
the use of WMLR when either (i) there is long-term time-series
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Figure 2. Root mean square error of probability estimates for the mouse simulation. MLR+TDGMM performs best while the WMLR
approach asymptotes in w relatively quickly despite the rather longer-term patterns of time dependence in the simulated data. The results for
classification error and classification error relative to the Bayes’ Rule are qualitatively similar.

dependence in the response variable or (ii) p is large. In the case
of the former, there is a risk that the prespecified window size w

would not be large enough to capture the long-term dependence.
Further, increasing w to sufficiently capture the long-term de-
pendence increases the effective number of covariates rather
dramatically to (K − 1) · (1 + p + 2wp) and this increase is
exacerbated when the size of the original covariate space p is
already large. While the simulations of KS, adapted from the
simple simulation of Section 3 of our article, are interesting, they
do not address these particular concerns since, in these simu-
lations, the time-series dependence in the response is relatively
short-term and there is only p = 1 covariate.

Our concern about the effective size of the covariate space
would be mitigated by KS’s findings that (i) WMLR is nearly
equivalent to an exponentially weighted moving average of the
X t (see KS Figure 2) and (ii) the β∗

k are parallel if both of these
findings were empirically general across a wide variety of data
settings. In such a case, WMLR would require the estimation
of only 1 + 2p model parameters (i.e., an intercept and a co-
efficient and decay parameter for each covariate) rather than
(K − 1) · (1 + p + 2wp) model parameters. However, consider
the coefficients from our mouse simulation normalized using
the procedure outlined in KS and plotted in Figure 3 for w = 6
as in KS Figure 2. Clearly, many of the coefficients are not
well-approximated by an exponentially weighted moving av-
erage. Further, they are not parallel either; indeed, the paral-
lel coefficients found by KS are a direct consequence of the
data generation process for the simple simulation (i.e., univari-
ate normal covariate emission distributions with equally spaced
state-specific means and common variance).

We appreciate the additional exploration of the duration (or
dwell time) distributions provided by KS. It was gratifying to see
that our model-based approach performed well in this setting. It
would also have been interesting to see the performance of the
GMM version of our model in the λ = 0 setting; while neither
the TDGMM or GMM reflect the fact that the duration distri-
butions are identical across all K states when λ = 0, the GMM
would at least reflect the fact that the duration distributions are
not transition-dependent.

When selecting (or estimating) δA, the common duration
distribution in the KS simulation, we might recommend weight-
ing the δj,k by the marginal frequencies of each conditional state
rather than employing a straight average as in KS. We also cau-
tion that a large amount of data is necessary to obtain estimates
of the duration distributions when using empirical frequencies
as in KS; the parsimonious parametric approach employed in
our article is more likely to perform better with little data.

Finally, we were intrigued by KS’s final simulation which
modified our simple simulation to include autoregressive
errors in the observed covariate. We were pleased that
the MLR+TDGMM outperformed both linear and quadratic
WMLR even in this setting where it is misspecified. Further,
we think it is important to note that, in our generative model,
time-series dependence in Yt can induce time-series dependence
in the X t . In other words, although our model assumes that X t

is conditionally independent of the rest of the data (Y−t , X−t )
given Yt , the X t considered unconditionally will undoubtedly be
time-dependent. If, in a particular data setting, the time depen-
dence in the X t induced by the Yt is not sufficient to capture the
full extent of the time dependence in the X t , one could consider
incorporating a WMLR within our TDGMM framework. While
this might not be the most principled approach to capturing the
“excess” autoregressive signal in the X t , the results presented
in KS Figure 3 indicate that it could be promising.

3. RESPONSE TO ZW

We agree with ZW that our conditional independence as-
sumption (i.e., that X t is conditionally independent of the rest
of the data (Y−t , X−t ) given Yt ) would not be appropriate when
either (i) Xt is not changing over time or (ii) Xt is unassociated
with Yt but has serial correlation. However, we should clarify
that, in our application, each of the covariates contained in X t

does vary over time–including the size (area) of the mouse as
suggested by the two video frames shown in Figure 9 of our
article. With regards to a covariate that is not associated with
Yt , we wonder why such a covariate would be employed in a
discriminative model designed to predict Yt .
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Figure 3. Normalized coefficients for the mouse simulation. The coefficients are normalized using the procedure outlined in KS and we
set βNREM ≡ 0 for identification. Many of the coefficients are not well-approximated by an exponentially weighted moving average and the
coefficients for REM and WAKE are not parallel.

ZW propose a procedure to empirically evaluate the condi-
tional independence assumption that X t is conditionally inde-
pendent of (Y−t , X−t ) given Yt by regressing X t on Y 1:(t−1)

and X1:(t−1). However, we note that this procedure should also
include Y (t+1):T and X(t+1):T as covariates to fully evaluate the
conditional independence assumption. Further, in practice, this
regression is likely difficult to implement given such a large
covariate space and careful attention would need to be given
to the issue of simultaneously testing so many covariates, es-
pecially given these covariates are likely to be highly collinear
under our model. An alternative approach would be to consider
a sliding window approach that regresses X t on Y (t−w):(t+w) and
X(t−w):(t+w); this approach nonetheless still suffers from having
a large number of collinear covariates and further is useful only
when the pattern of time dependence in the data is relatively
short-term. ZW also suggest evaluating the conditional inde-
pendence of Yt and X−t given Y−t using a similar regression-
based approach; we note this approach suffers from exactly the
same issues as the approach suggested for the evaluation of the
conditional independence assumption of X t .

ZW’s alternative suggestion of using the local state history
to model the transition probabilities (and, in particular, using “a
high transition probability from state i to itself if the number
of the times in state i prior to this time point is less than Mi”)
is intriguing. This approach, where the transition probabilities
depend on not just the state but also on the duration of the

state, is a particular form of a time-inhomogeneous Markov
model known as a nonstationary Markov model (Djuric and
Chun 2002) and it is equivalent to our GMM approach provided
that the transition probabilities away from one state to a different
state vary in the duration of the original state as a constant times
one minus the duration-dependent self-transition probability of
the original state.

ZW raise the issue of the disagreement between scorers.
While this issue is entirely legitimate, we reiterate that, on
epochs where the two scorers disagreed, a third scorer was
brought in to break the tie; this strongly mitigates any concern
about the accuracy of the classification for these epochs. While
we agree with ZW’s suggestion that a hidden Markov model
(HMM) could be employed to infer the true underlying sleep
state (modeling the two observed scores as a function of the
true underlying sleep state), it is not clear the results from such
a model would be particularly illuminating as the epochs on
which the two scorers disagree are almost certainly going to
have extremely high uncertainty under this HMM.

We thank ZW for the additional citations beyond those con-
tained in our article that pertain to adaptive multiclass weighted
learning procedures. While these procedures are useful in set-
tings with multiple classes and/or rare or unbalanced state (such
as our REM state), they unfortunately do not address the most
pertinent aspects of our application (i.e., long-term time depen-
dence in a noisy setting with high Bayes error).
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Figure 4. Classification errors by in-sample mouse and out-of-sample mouse for the mouse data. There is substantial heterogeneity in
classification error rate both by in-sample mouse and by out-of-sample mouse and there are consistent patterns. The results for the rate of REM
prediction, the REM false-positive rate, and the REM false-negative rate are qualitatively similar.

Finally, we completely agree with ZW that the issue of mouse-
to-mouse variability merits additional attention. Returning to the
data and fitting procedure of our article, recall that we evalu-
ated our various models by taking the full set of data for one
mouse (the “in-sample mouse”) as our training data, testing on
the full set of data from the other seven mice (the “out-of-sample
mice”), and repeating this procedure over all combinations of
in-sample mouse and out-of-sample mouse. Consequently, we
can evaluate model performance for each pair of in-sample and
out-of-sample mice and we do so for our classification error rate
metric in Figure 4. As can be seen, there is substantial hetero-
geneity in classification error rate both by in-sample mouse and
by out-of-sample mouse. Further, there are consistent patterns;
for example, the sleep behavior of Mouse 6 appears comparably
easy to classify regardless of the in-sample mouse while the
sleep behavior of Mouse 4 appears comparably difficult. Qual-
itatively similar results hold for other metrics we examined in-
cluding the rate of REM prediction, the REM false-positive rate,
and the REM false-negative rate. Future work should clearly
consider mouse-to-mouse variability and we have already made
initial efforts in this direction by modeling the sleep behavior of
each mouse using distinct parameters but pooling information
across mice using a hierarchical structure.

4. ADDITIONAL FINDINGS

We have two additional findings that we demonstrate by re-
turning to the simulation of Section 3 of our article. First, we re-
turn to our examination of out-of-sample prediction, but, rather
than evaluating predictions averaged over all T � = 200 out-of-
sample time points, we examine each time point individually.
Second, we examine the performance of various “oracle-like”
models.

The simulation of Section 3 of our article considered (i) 13
values of σ , the standard deviation of the covariate emission
distributions, ranging from nearly zero to three and (ii) three

values of T , the training set size, ranging from 100 to 10,000.
Here, we focus on σ ∈ {0.25, 0.50, 0.75, 1.00} and T = 1000.
The marginal probability of each state, P (Yt = i), is 0.288 for
state a, 0.491 for state b, and 0.220 for state c; consequently, the
classification error achieved by the model which always pre-
dicts the modal state (i.e., state b) is 1 − 0.491 = 0.509. We
can thus think of 0.509 as an upper bound on the classification
error of a model. Further, we note that the Bayes’ error (i.e., the
classification error achieved by the model that uses the true prob-
abilities, P (Yt |X�,�)) increases monotonically in σ taking on
values 0.007, 0.077, 0.168, and 0.243, respectively. Similarly,
the classification error of the model that uses the true conditional
probabilities P (Yt |X�

t ,�) but ignores the time-series informa-
tion in Yt (i.e., by conditioning only on X t , the covariates at time
t, rather than on X�

t , the full set of covariates for all time periods)
also increases monotonically in σ taking on values 0.032, 0.319,
0.338, and 0.403, respectively. Consequently, we can think of
these four values of σ as varying the noise level from a relatively
low level to a relatively high level.

In Figure 5, we plot the root mean square error of the proba-
bility estimates (i.e., relative to the Bayes’ Rule which uses the
true probabilities, P (Yt |X�,�)) at each out-of-sample time pe-
riod for each of the four estimated models considered in Section
3 of our article; the root mean square error is taken over 1000
independent replicates of our simulation. Before discussing the
results, we note that, while the signal in the data clearly at-
tenuates as the out-of-sample time period increases (and thus,
for example, the classification error of all models, except MLR
which lacks a time-series component, increases), our evaluation
is relative to the Bayes’ Rule and thus model performance need
not be monotone in time.

In the lowest noise setting where the covariates are strongly
predictive of the response, we see the probability estimates are
very close to the true ones—even for MLR which entirely ig-
nores all time-series dependence in the data. However, as the
noise level increases to the point where the covariates are not
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Figure 5. Root mean square error of probability estimates over out-of-sample time for the article simulation. The magnitude and pattern of
error varies in time, covariate noise level σ , and model choice. The results for classification error and classification error relative to the Bayes’
Rule are qualitatively similar.

particularly predictive and thus any signal in the data comes
from harnessing time-series dependence, the various models
begin to distinguish themselves (we note that, as both the noise
level and the out-of-sample time period get arbitrarily large, the
Bayes’ Rule probabilities converge to the marginal probabilities
given earlier).

Not surprisingly, MLR+TDGMM, the only correctly
specified model, performs best with near-zero error at any given
time point and little pattern in the errors. Also unsurprising is
the fact that MLR performs worst as it ignores all time-series
dependence in the data. Nonetheless, the pattern of error is
striking: it performs relatively worst at time periods that are
immediately out-of-sample and performs relatively best at time
periods at the end of the out-of-sample data and this pattern
is exacerbated as the noise level increases. This occurs both
because (i) the evaluation is a relative one (i.e., of MLR which
does not account for time-series dependence relative to the
Bayes’ Rule which does) and (ii) because the out-of-sample
data “continues on” from the in-sample data; in this setting,
models that account for time-series dependence can be very
accurate immediately out-of-sample (i.e., locally) while, at the
end of the out-of-sample period, such models have essentially
no information other than that contained in the covariates. This
pattern is exacerbated for high noise levels because, when the
noise is high, the bulk of the signal in the data comes from
harnessing time-series dependence and not from the covariates.
Unsurprisingly, in the middle of the out-of-sample period, there
appears to be a compromise between making use of information
from both time-series dependence and the covariates.

The incorrectly specified MLR+1MM and MLR+GMM
which take account of local time-series dependence but are not
general enough to capture the full pattern of dependence in the
data provide interesting contrasts to MLR and MLR+TDGMM.
At relatively low values of noise, they perform almost as well
as the MLR+TDGMM and there is no strong pattern in the
errors. On the other hand, as the noise level increases to the
point that the time-series dependence is providing the bulk of
the information about the response, there is a strong pattern to
the errors. These models (i) perform relatively well immediately
out-of-sample when the more local patterns of time dependence
captured by these models are reflective of the underlying data
generation process; (ii) perform relatively more poorly in time

periods that are moderately out-of-sample when there is strong
time dependence in the data that these models cannot capture;
(iii) perform relatively better as the ergodic patterns of time de-
pendence in the Yt wash out; and (iv) perform relatively very
well at the end of the out-of-sample period where the covariates
provide the bulk of the information about the Yt .

Moving to our second finding, recall that the MLR+TDGMM
is composed of two sets of estimates: (i) estimates of the con-
ditional class probabilities P (Yt |X t ) and (ii) estimates of the
time-series structure (i.e., the transition probability matrix and
the duration distributions). We note that the noise level in the
covariates impacts the quality of the former set of estimates
while having no impact on the quality of the latter set. Given
these two sets of estimates, one could imagine four versions
of the MLR+TDGMM: (i) one that uses the true conditional
class probabilities and the true time-series probabilities (i.e., the
Bayes’ Rule or “oracle” probabilities); (ii) one that uses esti-
mated conditional class probabilities and estimated time-series
probabilities (i.e., ordinary probability estimates); (iii) one that
uses the true conditional class probabilities and estimated time-
series probabilities (i.e., “conditional class semioracle” proba-
bility estimates); and (iv) one that uses estimated conditional
class probabilities and the true time-series probabilities (i.e.,
“time-series semioracle” probability estimates). We consider the
root mean square error of the ordinary probability estimates as
well as those of the two semioracles (i.e., relative to the Bayes’
Rule or the oracle probabilities) for the settings of our article
simulation considered earlier averaged over all T � = 200 out-
of-sample time points and over 1000 independent replicates of
the simulation. Before proceeding to our results, we note that all
four versions of the MLR+TDGMM have one minor “oracle-
like” property, namely that they use the true value of the head
size Mi,j of each transition-dependent duration distribution.

We present our results in Table 1. Perhaps surprisingly, the
ordinary probability estimates beat those of the two semioracles
across a wide variety of simulation settings (neither semioracle
is uniformly superior to the other). In other words, errors in
estimating the conditional class probabilities seem to “cancel”
with errors in estimating the time-series probabilities leading
to superior combined estimates. When we examined the error
by time as in Figure 5, there was relatively little pattern for
small σ (i.e., when the Bayes’ Rule probabilities are close to
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Table 1. Root mean square error of probability estimates for the
article simulation

Method σ = 0.25 σ = 0.50 σ = 0.75 σ = 1.00

Ordinary 0.031 0.069 0.091 0.098
Conditional class

semi-oracle
0.026 0.088 0.165 0.219

Time series
semi-oracle

0.021 0.083 0.179 0.247

The ordinary probability estimates beat those of the two semioracles across a wide variety
of simulation settings. The results for classification error and classification error relative to
the Bayes’ Rule are qualitatively similar.

the conditional class probabilities) but, as σ increases, the error
of the two semioracle probability estimates was closest to the
error of the ordinary probability estimates at the beginning and
end of the out-of-sample time and worst in between.

While the fact that the ordinary probability estimates outper-
form those of the two semioracles may perhaps be vexing or even
troubling, we analogize it to the case of simple linear regression
where the ordinary estimators for the slope and intercept are
β̂ = rx,ysy/sx and α̂ = ȳ − β̂x̄. For out-of-sample prediction
using root mean square error as the loss function, the ordinary
estimator (α̂, β̂) is superior to the semioracle estimator (α, β̂)
that uses the true intercept α, exactly analogous to that given
earlier. In this case, it is of course easy to see that the semioracle
can do better by estimating β in light of known α and that the
resulting estimator (α, β̃ = ∑

i(yi − α)xi/
∑

i x
2
i ) is superior to

both (α̂, β̂) and (α, β̂); a similar result holds, mutatis mutandis,
for the semioracle which knows the true slope β and which
should use α̃ = ȳ − βx̄ in place of α̂. Coming back to our case,
this suggests that aspects of the joint distribution P (Y 1:T , X1:T )
known by, for example, the time-series oracle (for instance, the
marginal distribution of the Yt ) should be used when estimat-
ing the conditional class probabilities, and we confirm this does
indeed result in probability estimates which outperform the or-
dinary ones. Nonetheless, this behavior is interesting because it
would appear, in contradistinction to the simple linear regression
case, that errors in estimating the conditional class probabilities
(due to, for example, errors in estimating the marginal distribu-
tion of the Yt) would compound–rather than cancel–with errors
in estimating the time series probabilities (and, of course, vice
versa) even though Table 1 does indeed indicate canceling.

These results concerning model performance as a function
of the out-of-sample time period and model performance of the
oracle-like models do not appear to be dependent on particular
aspects of the design of the article simulation. In fact, similar
results hold for the mouse simulation. Consequently, it is our
belief that these findings are relatively general across a wide
variety of data settings, and we thus believe that understanding
these results more deeply is a potentially fruitful topic for future
research.

5. DISCUSSION

The last decade has seen tremendous advances in statisti-
cal learning for classification and conditional class probability
estimation in the iid setting. Nonetheless, recently developed
methods applied without modification are a poor choice in our

setting due to the strong patterns of time-series dependence
contained in our data. Our goal has been to leverage the power
of recent advances while simultaneously harnessing the signal
provided by this time-series dependence. However, there is no
single obvious way to do this. One approach, employed in the
discussion by KS, is rather straightforward in that it applies the
standard statistical learning methods used in the iid setting to an
augmented set of covariates. Our approach, on the other hand, is
both more model-based and more application-driven. We model
the time-series dependence contained in the data separately from
the conditional class probabilities by using a powerful and gen-
eral form of the Markov model for the former and the standard
statistical learning methods used in the iid setting for the lat-
ter. While our approach is more computationally challenging
compared to the more straightforward approach, it nonetheless
remains computationally feasible while also being more par-
simonious and more easily estimable. It is also more adept at
capturing the rather general and long-term patterns of time de-
pendence frequently encountered in applied settings. Further,
by employing a coherent and unified probability model for the
data, we obtain genuine probability estimates that allow us to
easily calibrate and optimize our model’s performance across
the wide variety of objectives faced in our application.

APPENDIX: MOUSE SIMULATION DETAILS

The mouse simulation state space S = {NREM, REM, WAKE}
is the mouse data state space, the initialization distribution π =
(0.4400, 0.0483, 0.5117), and the transition probability distributions
A are

A =

⎛⎜⎝ 0.0000 0.2234 0.7766

0.2239 0.0000 0.7761

0.9974 0.0026 0.0000

⎞⎟⎠
The transition-dependent duration distributions δ are beta-negative bi-
nomials with geometric tails; in particular, the parameters (α, β, r) of
the “head” components and (q, s) of the “tail” components of each
duration distribution δi,j were set to

State α β r q s

NREM → REM 4.5076 5.4133 5.4094 0.8341 0.6682

WAKE → REM 0.3330 2.3036 2.0218 0.8000 0.0000

REM → NREM 0.0000 0.5214 36099000 0.8119 0.9488

WAKE → NREM 5.7763 0.7369 108.53 0.9551 0.9066

NREM → WAKE 0.4596 0.7288 0.7282 0.9897 0.9962
REM → WAKE 3.0829 1.6451 1.6434 0.9886 0.9911

The head sizes corresponding to q are MNREM→REM = 12,
MWAKE→REM = 2,MREM→NREM = 35,MWAKE→NREM = 51,MNREM→WAKE

= 352, and MREM→WAKE = 99, and the probability mass functions
resulting from these parameter estimates appear in Figure 1.

The covariate emission distributions μ are multivariate normal
with state-specific means and a common covariance matrix; this
choice of distribution results in a linear decision boundary and is fit to
the observed mouse data for the six continuous covariates omitting, for
obvious reasons, the powerful binary covariate that indicated whether
or not the light in the mouse cage was on in epoch t. The state-specific
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means are

State X1 X2 X3 X4 X5 X6

NREM 0.3529 −0.6786 −0.8167 −0.7739 0.2445 −0.7887

REM −0.0920 −0.6968 −0.8328 −0.7946 0.5787 −0.7508

WAKE −0.2947 0.6493 0.7809 0.7405 −0.2649 0.7491

while the common covariance matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9003 −0.1764 −0.2179 −0.2273 −0.1968 −0.1849

−0.1764 0.5581 0.2793 0.2996 −0.0670 0.3194

−0.2179 0.2793 0.3609 0.3517 −0.0499 0.2901

−0.2273 0.2996 0.3517 0.4253 −0.0163 0.3080

−0.1968 −0.067 −0.0499 −0.0163 0.9215 −0.0574

−0.1849 0.3194 0.2901 0.3080 −0.0574 0.4118

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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