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Statistical Learning With Time Series Dependence:
An Application to Scoring Sleep in Mice

Blakeley B. MCSHANE, Shane T. JENSEN, Allan I. PACK, and Abraham J. WYNER

We develop methodology that combines statistical learning methods with generalized Markov models, thereby enhancing the former to
account for time series dependence. Our methodology can accommodate very general and very long-term time dependence structures in an
easily estimable and computationally tractable fashion. We apply our methodology to the scoring of sleep behavior in mice. As methods
currently used to score sleep in mice are expensive, invasive, and labor intensive, there is considerable interest in developing high-throughput
automated systems which would allow many mice to be scored cheaply and quickly. Previous efforts at automation have been able to
differentiate sleep from wakefulness, but they are unable to differentiate the rare and important state of rapid eye movement (REM) sleep
from non-REM sleep. Key difficulties in detecting REM are that (i) REM is much rarer than non-REM and wakefulness, (ii) REM looks
similar to non-REM in terms of the observed covariates, (iii) the data are noisy, and (iv) the data contain strong time dependence structures
crucial for differentiating REM from non-REM. Our new approach (i) shows improved differentiation of REM from non-REM sleep and
(ii) accurately estimates aggregate quantities of sleep in our application to video-based sleep scoring of mice. Supplementary materials for
this article are available online.

KEY WORDS: Categorical; Classification; Machine learning; Markov; REM; Sequence.

1. INTRODUCTION: MOTIVATION AND CHALLENGES

1.1 The Science and Scoring of Sleep

Roughly 70 million Americans suffer from chronic sleep loss
or sleep disorders, costing the nation approximately $16 billion
per year in medical expenses and a further $50 billion per year in
lost productivity (Patlak 2005). In total, over 70 such disorders
afflict about 40 million Americans (Patlak 2005). As knowledge
of these problems grows among the populace, sleep is becoming
an increasingly important field of medical inquiry.

A major area of focus is in determining the genetic basis of
sleep behaviors: nonrapid eye movement (NREM) sleep, rapid
eye movement (REM) sleep, and wakefulness (WAKE). Of par-
ticular interest is REM sleep which occurs much less frequently
than either NREM sleep or WAKE and has an important role
in learning and memory (Stickgold et al. 2001). Sleep scientists
have shown that various aspects of sleep are heritable including
sleep duration (Partinen et al. 1983; Heath et al. 1990), the tim-
ing of sleep [i.e., circadian phase (Heath et al. 1990; Vink et al.
2001)], and the response to sleep deprivation (Franken, Chollet,
and Tafti 2001). While some gene variants affecting these traits
have been identified in human studies (He et al. 2009), present
knowledge is limited because it is too costly and labor intensive
to phenotype a large number of human subjects.

The principal alternative to human studies is to study gene
variants in mice. Mice are specially bred to allow the mapping of
quantitative trait loci to small regions of the genome (Churchill
et al. 2004; Chesler et al. 2008) and their behavior is observed.
Unfortunately, studies in mice are also quite limited in size (and
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consequently in scope) because the “gold standard” methodol-
ogy for studying sleep even in mice is expensive, invasive, and
time consuming. First, electrodes are surgically implanted into
the head of a mouse. Then, after waiting 10–14 days for the
mouse to recover from surgery, electroencephalographic (EEG)
and electromyographic (EMG) waves are recorded at 256 Hz
for 24 hr. The EEG/EMG data are then broken into distinct 10-
sec blocks (termed “epochs”) and each (i.e., 8640 epochs per
mouse per day) is manually scored as NREM, REM, or WAKE
by specially trained technologists.

Not only expensive and laborious, this process can also be
quite inconsistent. If the same mouse is scored independently
by two different technologists, there is disagreement on approx-
imately 6% of epochs and up to 15% within the important REM
stage (Guan et al. 2010; McShane et al. 2012). Moreover, when
a given technologist revisits the data at a later time period, his
original scores and new scores fail to match at rates that are only
mildly better than those for two different technologists.

Consequently, sleep scientists have sought high-throughput
automated systems that would avoid both the surgery and the
labor associated with EEG/EMG-based manual scoring. Indeed,
sleep scientists have already made initial efforts toward this
end. A leading approach, termed the “40-second Rule” (Pack
et al. 2007), uses video recordings (or, alternatively, electronic
beam splits) to determine whether a mouse is moving or not.
Any duration of inactivity lasting 40 sec or more is considered
sleep. The 40-second Rule has been validated by comparison to
manual scores based on EEG/EMG recordings in both young
(Pack et al. 2007) and old (Naidoo et al. 2008) mice of the
strain C57BL/6J. An alternative approach (Flores et al. 2007)
also relies on mouse movements but instead uses piezoelectric
sensors implanted into the floor of the mouse cage to detect
movement. The data recorded by such sensors contain patterns
that are characteristic of sleep versus wakefulness.
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Figure 1. Mean intra-epoch aspect ratio. A time-series plot of the mean intra-epoch aspect ratio for one mouse.

Although these methods are able to differentiate sleep from
wakefulness, they have no ability to detect the substages of sleep
(i.e., NREM sleep and REM sleep). However, there are known
physical manifestations differentiating NREM sleep and REM
sleep that should induce subtle signals in digital video recordings
[for a full review, see Steriade (2005)]. For example, while sleep
in general is associated with a reduction in muscle tone (atonia),
this reduction is far more pronounced in REM sleep as compared
to NREM sleep with a near complete absence of muscle tone in
REM sleep. Consequently, as the mouse transitions from NREM
sleep to REM sleep, there is an onset of near complete atonia
leading to a change in the shape of the mouse. In particular, the
mouse “flattens out” such that there is a decrease in its aspect
ratio (i.e., the ratio of the mouse’s length to its width) and an in-
crease in its area (i.e., the size of the mouse in a two-dimensional
video recording). Both of these features are detectable by video.
For example, the decrease in aspect ratio as the mouse tran-
sition from NREM sleep to REM sleep is visible in Figure 1,
which plots the aspect ratio (derived from video recordings) and
sleep state (determined by EEG/EMG-based manual scoring)
of a mouse over several hours. While this change and similar
ones are subtle, they are detectable and it is these features in
combination with the striking temporal dependencies evident in
Figure 1 that allow us to achieve our goal, namely, the devel-
opment of a model that can identify NREM sleep versus REM
sleep in mice based on digital video recordings.

1.2 Challenges for Statistical Learning Methods

To date, sleep scientists have focused on movement-based
measures (e.g., activity versus inactivity) obtained from video
cameras, electronic beams, or piezoelectric sensors. However,
Figure 1 and similar plots suggest that additional covariates
such as aspect ratio are relevant for classifying sleep stages.
A natural approach, therefore, would be to (i) cull additional
covariates from video data and (ii) employ statistical learning
procedures such as logistic regression, AdaBoost (Freund and
Schapire 1996), or random forests (RF) (Breiman 2001).

While statistical learning procedures have proven extremely
successful at minimizing classification error on a wide vari-
ety of problems, they are known to have reduced performance
in certain more difficult classification situations. For example,

AdaBoost can produce “overfit” conditional class probability
estimates that tend toward zero or one (Mease, Wyner, and Buja
2007; Mease and Wyner 2008), a problem that is particularly
acute in noisy environments where the Bayes’ error is high. The
high rate of disagreement among manual scorers and the sim-
ilarity of the NREM and REM states in video recordings both
suggest that the Bayes’ error is high in our setting.

Another difficulty is that many learning methods were devel-
oped for the binary classification setting and do not naturally
accommodate a multiclass setting like ours. Even approaches
that do (e.g., RF which does so by using a voting rule over the
generated trees) can fail in situations where multiple states have
similar observed covariates or when one or more states are rare.
In our application, we face both of these concerns: not only are
REM and NREM relatively undifferentiated in terms of the ob-
served covariates but also REM occurs in a mere 5% of epochs
(compared to about 45% for NREM and 50% for WAKE).

A final difficulty posed by our application—and the one that
will be the focus of our efforts—concerns the fact that most sta-
tistical learning methods assume independently and identically
distributed data. Specifically, the conditional class probability
function P (Yt |XXXt ) for outcome Yt given covariates XXXt is as-
sumed to be independent of the rest of the data (YYY−t , X−t ). As
illustrated in Figure 1, our data form a non-iid time series with
strong dependencies in both the response (i.e., the sleep states)
and the covariates. It should be possible to gain additional dis-
criminatory power by modeling these dependencies.

In summary, our application presents three challenges to stan-
dard statistical learning procedures: we require estimates of the
conditional state probabilities in a (i) noisy, (ii) multiclass setting
with rare and undifferentiated states, and (iii) time dependen-
cies. We address these challenges by combining conventional
classification methods with a very general form of the Markov
model. In particular, we introduce methodology that enhances
the conditional class probability estimates produced by stan-
dard statistical learning procedures so that they are able to take
account of a very general class of time dependence structures.
Nevertheless, by embedding these general dependence struc-
tures in a first-order Markov structure, our approach remains
computationally feasible, parsimonious, and easily estimable.

The more general approach considered here is critical for
our application, as the time dependence structures present
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Figure 2. Q-Q plots for the geometric distribution fit to NREM, REM, and WAKE. The Q-Q line is given by the solid line and the y = x line
by the dashed line. The gray region is a null interval created using parametric bootstrap samples based on the maximum likelihood estimate.

in sleep data are not suitably addressed by prior techniques.
For example, modeling strategies that combine classification
methods with a first-order Markov model (Rabiner 1989; Smyth
1994) are ill-suited to sleep data as the first-order Markov
model implies that bout durations (i.e., the individual state
holding times) are (i) geometrically distributed and (ii) do not
depend on the previous state. Prior literature has found both of
these assumptions untenable (McShane et al. 2010) and, indeed,
the geometric distribution provides a poor fit to our data as
evidenced by the fact that the black Q-Q lines in Figure 2 exceed
the gray null bands for each of the three states. Further, the
bout duration distributions of each state depend strongly on the
previous state (i.e., they are “transition-dependent”) as the black
Q-Q lines in Figure 3 exceed the gray null bands in each plot.
In contrast to the first-order Markov model, our more general
methodology can easily accommodate both of these features.

The empirical duration distributions plotted in Figures 2 and
3 point to a further difficulty posed by sleep data: in addition to
their nongeometric shape and their transition-dependence, these
distributions have extremely long (if not unbounded) support
thus suggesting that a high-order Markov model may be neces-
sary to adequately reflect the time dependence structures present
in the data. A challenge, then, is to allow for the extension of
the basic first-order Markov model to higher orders without the
concomitant explosion in the number of parameters associated
with standard higher-order Markov models. Building on related
techniques such as non-stationary Markov models (Sin and

Kim 1995; Vaseghi 1995; Djuric and Chun 2002), semi-Markov
models (Janssen and Limnios 1999), variable duration Markov
models (Ferguson 1980; Levinson 1986), and variable length
Markov models (Buhlmann and Wyner 1999), our methodology
overcomes this challenge by using a principled and pragmatic
parsimonious parametric approach that naturally allows for the
long state durations present in sleep data.

The remainder of our article is organized as follows. We in-
troduce our methodology in Section 2. In Section 3, we evaluate
its performance relative to simpler alternatives in an extensive
simulation study. Section 4 demonstrates that exploiting time
dependencies substantially adds to our ability to detect the sig-
nal extant in our video recordings of mice, particularly given
the high level of noise inherent in the problem; our procedure
is able to identify sleep and its substages with reasonable accu-
racy when validated by comparison to EEG/EMG assessments
in C57BL/6J male mice. Section 5 discusses the principal ben-
efits of our new sleep scoring methodology, including its ability
(i) to detect the rare and subtle REM state that is of special in-
terest to sleep researchers and (ii) to analyze the large numbers
of mice required for genetic analysis.

2. METHODS

2.1 Data Structure

In the standard classification setting, we have a response vari-
able Y , which takes on a finite set of values Y ∈ S = {1, . . . , k}
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Figure 3. Bout duration Q-Q plots for each state conditional on the previous state. The Q-Q line is given by the solid line and the y = x line
by the dashed line. The gray region is a null interval created using nonparametric bootstrap samples which permute the true labels.
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Figure 4. A first-order Markov model. In the first part, we observe both the Yt and the XXXt . In the second part, we observe the XXXt and must
predict the Yt .

depending on a set of covariates XXX. Typically, the goal is to es-
timate the conditional class probability function P (Y = y|XXX =
xxx) based on iid training data (yi,xxxi)Ni=1 drawn from the joint
distribution P (Y,XXX). Our sleep data contain strong sequential
dependencies, forcing us to move beyond this iid assumption.

In particular, our dataset consists of (i) a vector of length T of
response variables YYY 1:T = (Y1, . . . , YT ) with Yt ∈ S and (ii) a
T × p matrix of covariates X1:T whose rows are the video-based
covariates XXXt for time t. The goal is to either (i) estimate the
joint distribution P (YYY 1:T , X1:T ) or (ii) predict a new response
sequence YYY � given a new covariate matrix X� based on the
conditional distribution P (YYY 1:T |X1:T ).

2.2 Markov Models for Local Time Dependence

A standard approach for sequential data is the first-order
Markov model (1MM; Rabiner 1989) shown in Figure 4. This
model decomposes the joint distribution P (YYY 1:T , X1:T ) into three
components:

1. An initialization distribution, πππ = (π1, . . . , πk) where
πi = P (Y1 = i).

2. A time-homogeneous transition matrix A = (ai,j ) where
ai,j = P (Yt+1 = j |Yt = i).

3. A set of multivariate time-homogeneous covariate emis-
sion distributions μμμ = (μ1(xxx), . . . , μk(xxx)) where μi(xxx) =
P (XXXt = xxx|Yt = i).

A sequence of data is generated from this first-order Markov
model by (i) drawing an initial state Y1 = i from πππ , (ii) drawing
XXX1 = xxx from μi , (iii) transitioning to state Y2 = j according to
the transition probabilities given by the ith row of A, and (iv)
repeating Steps (ii)–(iii) mutatis mutandis until time T is reached
(for full details, see the online supplementary materials).

Collecting our model parameters into��� = (πππ, A,μμμ), the like-
lihood is given by

L(YYY 1:T , X1:T |���) = P (Y1)P (XXX1|Y1)

× P (Y2|Y1)P (XXX2|Y2) · · · P (YT |YT −1)P (XXXT |YT )

= πY1

[
T∏

t=2

aYt−1,Yt

] [
T∏

t=1

μYt
(XXXt )

]
. (1)

Given observed YYY 1:T , one typically estimates the values of A =
(ai,j ) by the empirical rate of transitions from state i to state j. To
estimate πππ , one usually uses either (i) the empirical frequency
of each of the k classes or (ii) the stationary distribution of

the estimated transition matrix1. Finally, one can estimate each
μi(xxx) independently using the XXXt for which Yt = i.

The overall purpose of this model is the scoring of
“out-of-sample” sleep states. That is, given a covariate se-
quence X� = (XXXT +1, . . . ,XXXT +T � ) and estimated parameters �̂��,
we want to calculate the conditional class probabilities for
YYY � = (YT +1, . . . , YT +T � ). The probabilities, denoted by γ̂t (i) ≡
P (Yt = i|X�, �̂��), can be calculated using the forward–backward
algorithm (Rabiner 1989). Our actual classification Ŷt for the
unobserved time periods is the state with maximum probabil-
ity, Ŷt = arg maxi γ̂t (i); classification by the modal state Ŷt

is optimal in terms of minimizing the out-of-sample classi-
fication error. While we also calculate the most likely path
ŶYY

� = arg maxYYY � P (YYY �|X, �̂��) using the Viterbi algorithm, we do
not use it for classification purposes as ŶYY

�
is suboptimal under

classification error loss (Rabiner 1989).
In the context of our sleep application, the first-order Markov

model suffers from two serious limitations. First, the estimation
of the k multivariate probabilities μi(xxx) is a difficult task, par-
ticularly since we have a large number of covariates and there
are rare states such as REM. Second, long-term dependencies
in the Yt cannot be captured due to the first-order Markov prop-
erty: any relationship between Yt and Yt+k must be “mediated”
by Yt+1, . . . , Yt+k−1. The first-order Markov assumption also
implies that the holding times in each state are geometrically
distributed, an assumption at odds with both data (see Figure 2)
and common sense since sleep bouts cannot be memoryless.

Our proposed methodology addresses both of these limita-
tions. In Section 2.3, we address the estimation of μi(xxx) by
estimating the model in a discriminative fashion. In Sections
2.4 and 2.5, we introduce longer-term dependence structures
and more general holding time distributions directly into the Yt

themselves.

2.3 Discriminative Markov Models

The estimation of the k multivariate covariate emission dis-
tributions μi(xxx) is difficult, particularly when the number of
covariates p is large, the distributional form of μi is unknown,

1Estimating πππ may or may not be necessary for out-of-sample prediction. When
the out-of-sample sequence “continues on” from the in-sample sequence as
in Figure 4, the initialization distribution for YT +1 is simply the row of the
transition probability matrix A corresponding to the observed YT and thus no
estimate of πππ is required. When the out-of-sample sequence is an entirely new
sequence, an estimate of πππ is necessary.
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or some of the states i are rare. However, it is potentially much
easier to address the inverse problem of classifying categorical
Yt based on high-dimensional XXXt . This is the setting of various
classification methods such as logistic regression and RF. In
particular, Bayes’ theorem links classification methods to the
covariate emission distributions μi as

μi(xxx) = P (XXXt = xxx|Yt = i)

=

Classification Methods︷ ︸︸ ︷
P (Yt = i |XXXt = xxx) ·

Constant wrt Yt︷ ︸︸ ︷
P (XXXt = xxx)

P (Yt = i)︸ ︷︷ ︸
Marginal Probabilities

∝ fi(XXXt )

pi

,

where fi(XXXt ) = P (Yt = i|XXXt ) and pi = P (Yt = i). We can thus
rewrite the likelihood given in Equation (1) as

L(YYY 1:T , X1:T |���) ∝ πY1

[
T∏

t=2

aYt−1,Yt

][
T∏

t=1

fYt
(XXXt )

pYt

]
= L(YYY 1:T , X1:T |���),

where ��� = (πππ, A,fff ,ppp) with fff = (f1(x), . . . , fk(x)) and ppp =
(p1, . . . , pk).

We have thus transformed the difficult problem of estimating
k multivariate probability distributions μμμ into the more straight-
forward problem of estimating (i) a conditional class probability
vector fff and (ii) a marginal probability vector ppp. For estimat-
ing fff , any classification method that gives conditional class
probability estimates will suffice, though—depending on the
data—some may be more appropriate than others; in this article,
we focus on using either logistic regression or RF. Probabilities
ppp are estimated by either (i) the empirical frequency of each of
the k states or (ii) the stationary distribution corresponding to the
estimate of A. The forward–backward algorithms require only
slight modifications to calculate γ̂t (i) = P (Yt = i|X, �̂��) under
our new parameterization (see the Appendix for details).

In summary, rather than estimating the Markov model gener-
atively, we estimate the model discriminatively (Smyth 1994).
The discriminative Markov model has many advantages includ-
ing allowing us (i) to avoid the estimation of k multivariate
probability emission distributions, (ii) to enhance any standard
classification methodology to accommodate sequential data, and
(iii) to save computational costs as compared with alternative se-
quential data methods [e.g., conditional random fields (Lafferty,
McCallum, and Pereira 2001)].

Nonetheless, our discriminative Markov model faces the lim-
itation that only local time dependence is modeled. Any re-
lationship between Yt and Yt+k must be communicated via
Yt+1, Yt+2, . . . , Yt+k−1 and holding times in each state must be
geometrically distributed. We extend our discriminative Markov
approach to accommodate more general and longer-range de-
pendencies in the next two sections.

2.4 Generalized Markov Models

The first-order Markov model presented in the previous
sections has geometrically distributed duration times: the
probability of staying in state i for τ epochs conditional
on having arrived in state i is Pi(τ ) = aτ−1

i,i (1 − ai,i). This
distribution, and its memoryless property, provides a poor
fit to our sleep data (see Figure 2). While it is conceptually

straightforward to generalize the model to accommodate
more general duration distributions, efficient computational
algorithms (i.e., forward–backward and Viterbi) are only
available for first-order Markov models. We overcome this
limitation by embedding a generalized Markov model (denoted
by GMM) with nongeometric durations into a 1MM structure,
thereby retaining the use of the efficient forward–backward and
Viterbi algorithms.

A GMM is parameterized by ��� = (πππ, A,μμμ,δδδ) in the gener-
ative case and ��� = (πππ, A,fff ,ppp,δδδ) in the discriminative case.
All parameters remain the same as in the 1MM case but (i) each
ai,i = 0 and (ii) holding times within state i are governed not
by ai,i but by an arbitrary duration distribution δi(τ ) = Pi(τ ),
which gives the probability of spending τ periods in state i
conditional on having arrived in state i. By δδδ, we denote the
collection (δ1(τ ), . . . , δk(τ )) of these distributions.

A sequence of data is generated from a GMM by (i) drawing
an initial state Y1 = i from πππ ; (ii) drawing a duration τ1 from δi

and setting Y1 = · · · = Yτ1 = i; (iii) drawing XXX1, . . . ,XXXτ1

iid∼μi ;
(iv) transitioning to state Yτ1+1 = j �= i according to the transi-
tion probabilities given by the ith row of A; and (v) repeating
steps (ii)–(iv) mutatis mutandis until time T is reached (for
full details, see the online supplementary materials). Hence, the
likelihood is given by

L(YYY 1:T , X1:T |���)

= [
P (Y1)PY1 (τ1)

]⎡⎣ ∏
t |Yt �=Yt−1

P (Yt |Yt−1)PYt
(τt )

⎤⎦[
T∏

t=1

P (XXXt |Yt )

]

= [
πY1δY1 (τ1)

]⎡⎣ ∏
t |Yt �=Yt−1

aYt |Yt−1δYt
(τt )

⎤⎦[
T∏

t=1

μYt
(XXXt )

]

∝ [
πY1δY1 (τ1)

]⎡⎣ ∏
t |Yt �=Yt−1

aYt |Yt−1δYt
(τt )

⎤⎦[
T∏

t=1

fYt
(XXXt )

pYt

]
= L(YYY 1:T , X1:T |���). (2)

To embed the GMM in a 1MM, we must model the δi(τ ) as

δi(τ ) = di(τ ) · I(τ ≤ Mi)

+ (1 − qi) · s
τ−Mi−1
i · (1 − si) · I(τ > Mi), (3)

which is a mixture of (i) a distribution di(τ ), which gives the
probability mass for τ = 1, 2, . . . ,Mi , and (ii) a shifted geo-
metric distribution, which gives the probability mass for values
of τ greater than Mi where Mi separates the “head” and “tail” of
the distribution. More specifically, the head of the distribution
has total mass given by the mixing proportion qi = ∑Mi

τ=1 di(τ )
and this mass is spread over arbitrary shape di(τ ) and arbitrary
length Mi ; on the other hand, the tail has total mass 1 − qi and
this mass is of geometric shape and unbounded length.

We write the full set of parameters for our GMM as ��� =
(πππ, A,fff ,ppp,ddd, sss,qqq) replacing δδδ by the three equivalent param-
eters (i) ddd = (d1(τ ), . . . , dk(τ )) where each di is a vector of
length Mi giving the probability of remaining in state i con-
ditional on having arrived there for τ = 1, . . . , Mi periods,
(ii) sss = (s1, . . . , sk) where each si is the geometric distribu-
tion parameter for state i, and (iii) qqq = (q1, . . . , qk) where each
qi = ∑Mi

τ=1 di(τ ) is the mixing proportion between the head and
tail of the duration distribution for state i.
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1152 Journal of the American Statistical Association, December 2013

Figure 5. GMM transition diagram. The original state space is
S = {a, b, c} and the head sizes are Ma = 2, Mb = Mc = 3. All tran-
sitions within the “head” and “tail” durations are given. Of transitions
away from states, only transitions away from (b, 1) are given; similar
transitions from (a, 1) to each (b, n) and (c, n) and from (c, 1) to each
(a, n) and (b, n) are omitted for aesthetic reasons.

We can embed our GMM into a 1MM through a set of
augmented variables. Given an observed sequence YYY 1:T =
(Y1, . . . , YT ), we construct Rt = arg maxτ {Yt = Yt+1 = · · · =
Yt+τ−1 �= Yt+τ } and Zt = min(Rt,MYt

+ 1). Rt gives how
much longer the sequence remains in the current state and
Zt caps Rt at the maximal size. We denote our augmented
variable as Y ′

t = (Yt , Zt ) and our augmented state space as
S ′ = {(i, n)|i ∈ S, n = 1, . . . , Mi + 1} (i.e., all possible values
of the couplet Y ′

t ).
As a simple example, consider the observed sequence

YYY 1:T = {a, a, a, a, b, b, b, b, b, c, c, a} on S = {a, b, c} with
Ma = 2,Mb = Mc = 3. Our process converts YYY 1:T to the aug-
mented sequence YYY ′

1:T = {(a, 3), (a, 3), (a, 2), (a, 1), (b, 4),
(b, 4), (b, 3), (b, 2), (b, 1), (c, 2), (c, 1), (a, 1)}.

Our augmented state space S ′ requires an augmented transi-
tion probability matrix A′, which we construct as follows (see
Figure 5 for a simple example based on the above):

1. Transitions away from states: For Zt = 1, there are three
cases:
(a) Transitions from Y ′

t = (i, 1) to Y ′
t+1 = (i, n) have

probability zero for n = 1, . . . ,Mi .
(b) Transitions from Y ′

t = (i, 1) to Y ′
t+1 = (j, n) have

probability ai,j · di(n) for i �= j and n = 1, . . . , Mj .
(c) Transitions from Y ′

t = (i, 1) to Y ′
t+1 = (j,Mj + 1)

have probability ai,j · (1 − qj ) for i �= j .
2. Transitions within “head” duration of states: For Zt =

2, . . . ,Mi , the transition from Y ′
t = (i, Zt ) to Y ′

t+1 =
(i, Zt − 1) has probability one; all other transitions have
probability zero.

3. Transitions within “tail” duration of states: For Zt =
Mi + 1, the self-transition from Y ′

t = (i,Mi + 1) to
Y ′

t+1 = (i,Mi + 1) has probability si and the transition
from Y ′

t = (i,Mi + 1) to Y ′
t+1 = (i,Mi) has probability

(1 − si); all other transitions have probability zero.

We can also easily augment the remaining parameters for
our new state space S ′. Marginal probabilities ppp′ are obtained
from the stationary distribution of A′. To obtain the condi-
tional class probabilities fff ′ and the initialization distribution
πππ ′, let us first define Y (i) and Z(i) as the first and second ele-
ments, respectively, of the state couplet i = (Yt , Zt ) ∈ S ′. Then,
the fff ′ are obtained by setting f ′

i (xxx) = P (Y ′
t = i|XXXt = xxx) =

fY (i)(xxx) · p′
i/

∑
j |Y (j )=Y (i) p

′
j . Similarly, each π ′

i = P (Y ′
1 = i) is

given by π ′
i = πY (i) · dY (i)(Z(i)) if Z(i) = 1, . . . ,Mi or π ′

i =
πY (i) · (1 − qY (i)) if Z(i) = Mi + 1. Thus, the f ′

i and π ′
i are

simply reweighted versions of the original fY (i) and πY (i).
In summary, we have embedded a GMM on state space S pa-

rameterized by ��� = (πππ, A,fff ,ppp,ddd, sss,qqq) into a 1MM on state
space S ′ parameterized by ���′ = (πππ ′, A′,fff ′,ppp′). Because this
is a true embedding, the likelihood L(YYY 1:T , X1:T |���) given in
Equation (2) is equivalent to the likelihood under the new pa-
rameterization, L(YYY ′

1:T , X1:T |���′).
The estimation of the parameters ���′ is straightforward and

we begin with the transition probability matrix A′. While the
maximum likelihood estimate of A′ is given by the empirical
frequencies of the Y ′

t transitions, this can be an inefficient esti-
mate since it ignores the known structure in A′ (i.e., entries are
known to be zero, one, or products of the original A and the
parameters ddd, sss, and qqq). Instead, we prefer (i) to estimate the
transition probability ai,j from state i to state j using empirical
frequencies and (ii) to parameterize the di(τ ) and estimate the
parameters di , si , and qi using the observed duration times for
state i. We can then combine estimates (i) and (ii) as detailed
above to form our estimate of A′.

The ppp′ are estimated by using the stationary distribution of
the estimate of A′. The augmented conditional class probabil-
ities fff ′ are estimated by (i) estimating fff as in the 1MM case
(i.e., by using standard classification procedures such as logis-
tic regression and RF) and then (ii) reweighting these estimates
as above (i.e., f̂ ′

i (xxx) = f̂Y (i)(xxx) · p̂′
i/

∑
j |Y (j )=Y (i) p̂

′
j ). Similarly,

the initialization parameters πππ are estimated by (i) estimating
πππ as in the 1MM case and then (ii) reweighting these esti-
mates as above (i.e., π̂ ′

i = π̂Y (i) · d̂Y (i)(Z(i)) if Z(i) = 1, . . . , Mi

or π̂ ′
i = π̂Y (i) · (1 − q̂Y (i)) if Z(i) = Mi + 1). Given these esti-

mates of a GMM embedded into a 1MM, we can apply the the
forward–backward and Viterbi algorithms for the discriminative
1MM just as in Section 2.3

2.5 Transition-Dependent Generalized Markov Model

Although the GMM presented in Section 2.4 is much more
general than a 1MM, certain properties of the GMM are not real-
istic in our application. Specifically, the duration distributions in
a GMM are “unconditional”: the duration distribution for state i
does not depend on the prior state j. However, we have observed
in our sleep data that the duration of, for example, WAKE bouts,
which follow from NREM, are longer than WAKE bouts, which
follow from REM (see Figure 3).

We thus introduce a transition-dependent generalized Markov
model (TDGMM) where the duration distributions of the current
state depend on the previous state. In this new model, δδδ contains
k · (k − 1) duration distributions δi,j (τ ) instead of the k duration
distributions δi(τ ) of the GMM; each δi,j (τ ) = Pi,j (τ ) is the
probability of spending τ periods in state j conditional on having
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McShane et al.: Statistical Learning With Time Series Dependence: An Application to Scoring Sleep in Mice 1153

arrived in state j from state i. The data-generation process and
likelihood for the TDGMM are identical to those of the GMM
with the appropriate δi,j used in place of δj .

We model the δi,j using the specification of Equation (3), and
hence, our duration distribution parameters are again given by
(ddd, sss,qqq). In contrast to the GMM where each of these parameters
was of length k (i.e., one for each δi), in the TDGMM, each of
these parameters is of length k · (k − 1) (i.e., one for each δi,j ).

As with the GMM, we can embed the new TDGMM within
the first-order Markov structure by augmenting the state space.
Assuming we have observed YYY = (Y1, . . . , YT ), we define Pt =
Yσt

where σt = arg mins(Ys �= Ys+1 = Ys+2 = · · · = Yt ) (i.e.,
the state the sequence was in prior to the current state). We then
construct Rt as we did in for the GMM (i.e., Rt = arg maxτ {Yt =
Yt+1 = · · · = Yt+τ−1 �= Yt+τ }) and again cap it with Zt =
min(Rt,MPt ,Yt

+ 1). Finally, we set the triplet Y ′
t = (Pt , Yt , Zt )

thus collecting the previous state, the current state, and the
capped length of time remaining in the current state. The aug-
mented state space is S ′ = {(i, j, n)|i ∈ S, j ∈ S, i �= j, n =
1, . . . ,Mi,j + 1} (i.e., all possible values of the triplet Y ′

t ).
Consider again the example YYY 1:T = {a, a, a, a, b, b, b, b, b,

c, c, a} on S = {a, b, c} with Mb,a = Ma,b = Mc,b = 3, Mc,a =
Ma,c = Mb,c = 2. Supposing Y0 = c, our process converts
YYY 1:T into the augmented sequence YYY ′ = {(c, a, 3), (c, a, 3),
(c, a, 2), (c, a, 1), (a, b, 4), (a, b, 4),(a, b, 3), (a, b, 2), (a, b,1),
(b, c, 2), (b, c, 1), (c, a, 1)}.

As before, augmented state space S ′ requires an augmented
transition probability matrix A′, which can be constructed as
follows (see Figure 6 for a simple example based on the above):

1. Transitions away from states: For Zt = 1, there are three
cases:
(a) Transitions from Y ′

t = (i, j, 1) to Y ′
t+1 = (i ′, j ′, n)

have probability zero for n = 1, . . . ,Mi ′,j ′ and i ′ �= j .

(b) Transitions from Y ′
t = (i, j, 1) to Y ′

t+1 = (i ′, j ′, n)
have probability ai ′,j ′ · di ′,j ′ (n) for n = 1, . . . , Mi ′,j ′ ,
i ′ = j , and j ′ �= j .

(c) Transitions from Y ′
t = (i, j, 1) to Y ′

t+1 = (i ′, j ′,
Mi ′,j ′ + 1) have probability ai ′,j ′ · (1 − qi ′,j ′ ) for i ′ =
j and j ′ �= j .

2. Transitions within “head” duration of states: For Zt =
2, . . . ,Mi,j , the transition from Y ′

t = (i, j, Zt ) to Y ′
t+1 =

(i, j, Zt − 1) has probability one; all other transitions have
probability zero.

3. Transitions within “tail” duration of states: For Zt =
Mi,j + 1, the self-transition from Y ′

t = (i, j,Mi,j + 1) to
Y ′

t+1 = (i, j,Mi,j + 1) has probability si,j and the transi-
tion from Y ′

t = (i, j,Mi,j + 1) to Y ′
t+1 = (i, j,Mi,j ) has

probability (1 − si,j ); all other transitions have probability
zero.

We have thus embedded a TDGMM on state space S parame-
terized by ��� = (πππ, A,fff ,ppp,ddd, sss,qqq) into a 1MM on state space
S ′ parameterized by ���′ = (πππ ′, A′,fff ′,ppp′). Due to the similarity
between the GMM and the TDGMM, we can again use the es-
timation strategy outlined in Section 2.4 (the only difference is
that the duration distribution parameters (ddd, sss,qqq) are estimated
based on the observed duration times for state j conditional on
entering state j from state i rather than unconditionally and we
use the above procedure to construct estimates of A′; these dif-
ferences propagate in the obvious manner into the estimates of
ppp′, fff ′, and πππ ′).

3. SIMULATION EVALUATION OF MODELS

We evaluate the performance of several models presented in
Section 2 via simulation where the true model is a TDGMM.
Our simulation state space is S = {a, b, c} and the initialization

Figure 6. TDGMM transition diagram. The original state space is S = {a, b, c} and the head sizes are Mb,a = Ma,b = Mc,b = 3, Mc,a =
Ma,c = Mb,c = 2. All transitions within the “head” and “tail” durations are given. Of transitions away from states, only transitions away from
(b, a, 1) are given; similar transitions from (a, c, 1) to each (c, a, n) and (c, b, n); from (a, b, 1) to each (b, a, n) and (b, c, n); from (c, a, 1) to
each (a, b, n) and (a, c, n); from (c, b, 1) to each (b, a, n) and (b, c, n); and from (b, c, 1) to each (c, a, n) and (c, b, n) are omitted for aesthetic
reasons.
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distribution is the uniform distribution πππ = (1/3, 1/3, 1/3).
We set the covariate emission distributions μμμ equal to Xt ∼
N (μYt

, σ 2), where μa = 0, μb = 1, and μc = 2 and σ is set
to 13 different values ranging from 0.01 to 3. The transition
probability distributions are given by

A =

⎛⎜⎝ 0 1/2 1/2

3/4 0 1/4

1/3 2/3 0

⎞⎟⎠.

The duration distributions δi,j are as in Equation (3) with Mi,j

set to M = 10 and di,j , the “head” components of the duration
distributions, set to the Beta Negative Binomial distribution with
finite support,

d(τ |α, β, r) = 1

c(α, β, r,M)

× �(α + β)�(α + r)�(τ + r−1)�(τ + β−1)

�(r)�(α)�(β)�(τ )�(τ + r + α + β−1)
,

τ = 1, . . . ,M,

where c(α, β, r,M) is a normalizing constant ensuring that each
δi,j sums to one (i.e., di,j sums to qi,j ). The parameters (α, β, r)
of the “head” components and (q, s) of the “tail” components

of the duration distributions δi,j were set to

State ααα βββ r q s

a → b 0.00 1.00 442413 1.00 0.00

a → c 0.00 1.65 0.45 1.00 0.00

b → a 1808 148.41 33.12 1.00 0.00

b → c 0.00 7.39 7.39 0.50 0.69

c → a 0.00 22026 0.61 0.62 0.90

c → b 0.00 1.00 442413 0.50 0.90

The parameters settings were chosen to provide a diversity of
shapes as illustrated in Figure 7.

Our study uses three different training set sizes (T = 100,
T = 1000, and T = 10,000). The test set size is always fixed at
T � = 200 and “continues” from the training data as in Figure 4.
For each value of σ and T , results are averaged over 1000 simu-
lated datasets. The competing models we consider are (i) multi-
nomial logistic regression (MLR), (ii) MLR enhanced by a 1MM
(MLR+1MM), (iii) MLR enhanced by a GMM (MLR+GMM),
and (iv) MLR enhanced by a TDGMM (MLR+TDGMM).

Performance is evaluated in three ways. First, we examine
the classification error of the each of the four methods as well
as that of the Bayes’ Rule, which classifies based on the modal
true marginal probability γt (i) = P (Yt |X�,���). Second, since
the Bayes’ Rule gives the optimal classifications that minimize
the error rate and since it is free of the noise inherent in the Yt , we

Figure 7. Transition-dependent duration distributions for the simulation.
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Figure 8. Simulation results. The x-axis is the noise level σ of the covariate emission distributions. The y-axis is the classification error
(row 1), the classification error relative to Bayes’ Rule (row 2), and the RMSE of the probability estimates (row 3). The columns give the three
training set sizes.

also examine the error rate of each of the four methods relative
to the classes predicted by the Bayes’ Rule. Finally, we examine
the root mean squared error (RMSE) of the marginal probability
estimates γ̂t (i) ≡ P̂ (Y = i|X�, �̂��) from the four models2.

We present our simulation results in Figure 8. In terms of clas-
sification error, the correctly specified TDGMM model does
best with a moderate to large amount of in-sample data. The
incorrectly specified models improve only mildly as T is in-
creased from 1000 to 10,000, whereas the correctly specified
TDGMM improves markedly. However, even for T = 10,000,
the TDGMM does not match the Bayes’ Rule at high noise lev-
els; this suggests that massive amounts of training data may be
required in very high noise settings. The GMM model performs
poorly relative to the TDGMM because it estimates a single

2We also examined other proper scoring rules such as log loss and exponential
loss (Savage 1971; Buja, Stuetzle, and Shen 2005). All yielded results that were
qualitatively similar to those presented for squared error loss.

duration distribution for each state when the reality is a mixture
of transition-specific duration distributions.

In terms of the RMSE of the estimated probabilities, the
TDGMM gives the best results in large training samples and
appears to be converging on the true probabilities as the training
set size grows. However, the simpler 1MM and GMM mod-
els seem to provide better estimates in small sample sizes and
comparable estimates at high noise levels. Again, the incor-
rectly specified models improve only mildly as T is increased
from 1000 to 10,000, whereas the correctly specified TDGMM
improves markedly—an encouraging result for our approach.

4. APPLICATION TO SLEEP SCORING

4.1 Data Description and Summary Statistics

Our sleep data come from eight mice of the strain C57BL/6J.
Each mouse was manually scored for sleep by the invasive and
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Figure 9. Two frames of video data. The left frame illustrates a typical awake posture, whereas the right frame illustrates a typical sleep
posture. Our tracking software imposes an ellipse upon the mouse which is used to calculate its size (area), aspect ratio, and velocity.

laborious method described in Section 1.1. That is, the mice were
surgically implanted with EEG/EMG electrodes and allowed a
10- to 14-day postsurgery recovery and a habituation period.
Next, EEG/EMG signals were recorded for 24 hr, digitized at
256 Hz, and broken up into 10-sec epochs (8640 in total per
mouse) for manual scoring. Each of the 8 × 8640 epochs was
manually scored as NREM, REM, or WAKE by two independent
scorers.

The independent scorers disagreed on about ≈6% of the 10-
sec epochs and disagreement rates were substantially higher
among those epochs where the sleep stage was REM or tran-
sitional. For each epoch where the two scorers disagreed, we
used an independent third scorer to break the tie and to thereby
determine the “true” state.

The goal of our methodology is to predict sleep scores using
video data that closely match the “gold standard” EEG/EMG-
based manual scores. Our digital video consists of 100 frames
per epoch and two example frames, one typical of wakefulness
and one typical of sleep, are shown in Figure 9. Tracking soft-
ware was used to fit an elliptical approximation to the mouse in
each frame.

Using this ellipse, the tracking software calculates six con-
tinuous covariates for each epoch: the intra-epoch mean and
standard deviation of the velocity, aspect ratio, and size (area)
of the mouse. We also have a single binary covariate that indi-
cates whether or not a light in the cage was turned on in each
epoch (lights were on from 7 a.m. to 7 p.m.). Thus, we have
seven covariates XXXt with which to predict the sleep stage Yt for
each of 8640 epochs.

Table 1. Summary statistics by sleep state

Sleep Fraction of Number of Average
state epochs (%) bouts duration

NREM 43.99 2002 15.19
REM 4.82 452 7.38
WAKE 51.19 1907 18.55

NOTE: Average duration is given in number of 10-sec epochs.

Table 2. Summary statistics by conditional sleep state

Sleep Fraction of Number of Average
state epochs (%) bouts duration

NREM → REM 4.86 446 7.45
WAKE → REM 0.01 5 1.80
REM → NREM 3.12 102 20.94
WAKE → NREM 41.25 1,898 14.88
NREM → WAKE 48.19 1,552 21.26
REM → WAKE 2.58 350 5.04

NOTE: Average duration is given in number of 10-sec epochs.

To give an overall sense of the data, we provide summary
statistics for the three states in Table 1. The mice spend about
half of the day awake and the other half in the two stages of
sleep. As mentioned previously, REM sleep is relatively rare,
accounting for fewer than 5% of epochs. Furthermore, REM has
many fewer bouts and a lower average bout duration.

As bout durations in a given state depend on the prior state
(see Figure 3), we provide in Table 2 the same summary statistics
for the three sleep states conditional on the previous state. We
see that almost all bouts of REM come from NREM. This is
not surprising since transitions from WAKE to REM are an
extremely rare physiological occurrence3. For NREM, the bouts
seem to be longer when entered from REM compared with when
entered from WAKE. For WAKE, the bouts tend to be longer
when entered from NREM rather than entered from REM. These
characteristics of the data motivated our consideration of the
TDGMM.

Another important feature of the duration distributions is
heavy skewness, with some bouts lasting many times the length
of the mean durations presented in Tables 1 and 2. As mentioned
previously, sleep bout durations are distributed according to a

3Such transitions are indicative of sleep disorders, incorrectly scored epochs,
or DREM. DREM is a direct transition from WAKE to REM that occasion-
ally occurs in some mice. Such episodes occur almost exclusively during the
lights on period and are the result of brief awakenings interrupting a sustained
period of REM sleep (Fujiki et al. 2009).
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McShane et al.: Statistical Learning With Time Series Dependence: An Application to Scoring Sleep in Mice 1157

“head and tail” distribution (McShane et al. 2010), which fea-
tures (i) most of the probability mass in the first few epochs and
(ii) the remaining mass in a long right tail. We found that the beta
negative binomial distribution with geometric tail used in Sec-
tion 3 could accommodate these features and provide a good fit
to the conditional bout duration distributions of our TDGMM.
Details of this estimation are provided in the supplementary
materials.

4.2 Internal Model Evaluation

Our principal goal is to build a model based on video data,
which best matches EEG/EMG-based manual scores on an
epoch-by-epoch basis. We thus use a cross-validation approach
to evaluating our various models: we take the full set of epochs
for one mouse as our training data and test each model on the
full set of epochs from the other seven mice. We then repeat this
procedure using each mouse as the “in-sample” mouse and then
average our results over all 483,840 out-of-sample epochs.

Before trying to discriminate REM from NREM, we first
consider the simpler two-state problem of scoring SLEEP versus
WAKE. We assign the “true” two-state score for a given epoch
to be SLEEP if the manual scorers scored the epoch as NREM
or REM and assign it to be WAKE otherwise (breaking ties, as
above, by using an independent, third scorer when necessary).
Our performance metric is the out-of-sample classification error
rate of our predictions as compared to the manual scores.

For this two-state task, we compare the performance of six
models: (i) MLR, (ii) MLR+1MM, (iii) MLR+GMM, (iv) RF,
(v) random forests enhanced by a 1MM (RF+1MM), and (vi) RF
enhanced by a GMM (RF+GMM). For data consisting only of
two states, the TDGMM reduces to a GMM and so is excluded
from this evaluation.

We also compare our model choices to the “40-second Rule”
common in sleep science (Pack et al. 2007). The 40-second
Rule judges a mouse “inactive” in a given epoch if the mean
intra-epoch velocity is less than 3 pixels/s and scores an epoch as
SLEEP when there are four or more consecutive inactive epochs
(i.e., 40 or more seconds of inactivity); otherwise, it scores the
epoch as WAKE.

The second column of Table 3 gives the classification error
rate for each of these methods as well as the “gold-standard”
rate of disagreement between manual scorers (which can be
viewed as the minimal achievable error rate). We see that our
1MM and GMM enhancements of MLR and RF achieve error
rates lower than the “40-second Rule” that is currently used
by sleep scientists. The best overall error rates are achieved
by the GMMs that have the most flexible model for the du-
ration distributions. The MLR+GMM model provides a 15%
raw improvement over MLR (which does not model time-series
dependence); this equates to a 31% improvement relative to
the minimum achievable error rate. It also provides a 19% raw
improvement over the 40-second Rule or a 36% improvement
relative to the minimum achievable. We also note that receiver
operating characteristic (ROC) curves (not shown) demonstrate
a uniform improvement of the GMMs relative to the 1MMs and
base MLR and RF models.

We now consider the more difficult (and important) task of
classifying each epoch into NREM versus REM versus WAKE.

Table 3. Out-of-sample classification error rates

Three-stateTwo-state
Error Error REM REM REM

Method Rate (%) Rate (%) Rate (%) FP (%) FN (%)

MLR 9.7 14.9 1.4 1.2 95.3
MLR+1MM 8.4 25.1 18.3 16.8 52.4
MLR+(TD)GMM 8.2 21.9 14.5 13.0 55.8
RF 10.4 16.2 2.3 1.9 90.9
RF+1MM 8.9 24.7 17.4 15.9 53.0
RF+(TD)GMM 8.8 23.3 15.6 14.0 54.2
40-second Rule 10.1 NA NA NA NA
Manual scores 4.8 5.8 NA NA NA

NOTE: The first column gives the methodology and the second column gives the overall
classification error rate for the two-state SLEEP versus WAKE task. The third through sixth
columns give, respectively, the overall classification error rate, the rate of REM prediction,
the REM false positive rate, and the REM false negative rate for the three-state NREM
versus REM versus WAKE task. We use a GMM for the two-state task and a TDGMM for
the three-state task. FP = False Positive Rate; FN = False Negative Rate.

As discriminating between SLEEP and WAKE is comparably
easy, the primary consideration is in classifying NREM ver-
sus REM. As mentioned, REM is a relatively rare state that is
biologically important. Furthermore, it is the focus of many in-
quiries in sleep science. Consequently, in typical applications,
the cost of misclassifying a NREM epoch as REM is much lower
than the cost of misclassifying a REM epoch as NREM. Indeed,
the rarity and importance of REM suggests the desirability of
a relatively high false positive rate and a comparably low false
negative rate.

For this three-state task, we compare the performance of
(i) MLR, (ii) MLR+1MM, (iii) MLR+TDGMM, (iv) RF,
(v) RF+1MM, and (vi) RF enhanced by a TDGMM
(RF+TDGMM). We consider a TDGMM but not a GMM for
this three-state task because the unconditional duration distri-
butions of the GMM provided a poor fit to the data (see the on-
line supplementary materials). We also exclude the “40-second
Rule” from this comparison since this rule is incapable of differ-
entiating NREM from REM sleep. In fact, there is no existing
procedure in the sleep literature that classifies NREM versus
REM sleep.

Classification error rates for the three-state task are presented
in the third column of Table 3. The three-state task is compli-
cated by the rarity of the REM state and the similarity between
REM and NREM on the observed covariates, thus making over-
all error rates much higher than those in two-state task (i.e.,
column two versus column three). In addition to the overall er-
ror rates, we also include the rate of REM prediction (column
four) as well as the false positive and false negative rate for REM
(columns five and six, respectively) since this state is especially
important to sleep researchers.

Table 3 gives some unsurprising results: the relatively rare
REM state is difficult to classify correctly with REM false neg-
ative rates being especially large. It is a challenge to discover
any method with power to detect REM sleep. That is, there is
an inherent trade-off between (i) obtaining a low REM false
negative rate accompanied by a higher overall error rate and a
higher REM false positive rate or (ii) obtaining a lower overall
error rate and a lower REM false positive rate while having a
high REM false negative rate.
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Figure 10. Out-of-sample ROC curves for the three-state REM versus NREM versus WAKE task. The curves are for the variants of multinomial
logistic regression. Those for the variants of random forests are nearly identical.

The simple MLR and RF have the lowest overall error rates
and REM false positive rates simply because they choose alter-
native (ii) and more or less ignore the REM state. Epochs are
very rarely classified as REM by these simple methods, resulting
in extremely high REM false negative rates. Due to the asym-
metry in the cost of errors discussed above, sleep researchers
would have a strong preference against such classifications.

In contrast, the TDGMM enhancements of MLR and RF
are able to achieve a better balance for REM prediction: they
have a much lower REM false negative rate while remaining
competitive on the overall error rate and REM false positive
rates. By accounting for the time dependence in the data, our
TDGMM procedure is able to capture a greater proportion of
the subtle REM signal.

We also examine ROC curves for the three states in
Figure 10. MLR, MLR+1MM, and MLR+TDGMM all per-
form strongly at discriminating WAKE from the other states,
though MLR+TDGMM uniformly dominates. On the other
hand, there are substantial differences for REM and NREM.
MLR+TDGMM uniformly dominates the other two models
on the rare and important REM state. For NREM, MLR and
MLR+TDGMM perform similarly and both uniformly domi-
nate MLR+1MM.

4.3 External Model Evaluation

In this section, we compare our top methodology from the pre-
vious section (MLR+TDGMM) to several other classification
techniques. Specifically, we consider AdaBoost (Freund and
Schapire 1996), LogitBoost (Friedman, Hastie, and Tibshirani
2000), and Bagged Trees (Breiman 1996). We also examined
two implementations of conditional random fields—the linear
MALLET system (McCallum 2003) and the TreeCRF approach
(Dietterich, Ashenfelter, and Bulatov 2004)—both of which are
popular in the computer science literature4.

4We used default parameter settings for MALLET. TreeCRF requires discrete
data and so our covariates were binned using different numbers of quantiles (5,
10, 25, and 100). TreeCRF also requires that the number of leaves be specified
(we tried 8, 16, 32, 64, 128, and 256). The TreeCRF results given are the best
case over all these parameter settings (b and l are the corresponding number of
bins and leaves).

Classification error rates for these methods applied to the
three-state NREM versus REM versus WAKE task are presented
in Table 4. In general, the alternative classification methods
perform similarly to the simple MLR and RF models in Table 3
in that the important REM state is generally ignored. The result
is lower overall error rates and REM false positive rates but
extremely high REM false negative rates. Our MLR+TDGMM
methodology achieves a much lower REM false negative rate
with only modest increases in overall error rate and REM false
positive rates.

4.4 Aggregate Measures of Sleep

Sections 4.2 and 4.3 focused on our ability to match the EEG/
EMG-based manual scores on an epoch-by-epoch basis. How-
ever, sleep scientists are also interested in aggregate measures of
sleep behavior such as the total number of minutes spent in each
sleep state at various times of the day. While matching man-
ual scores on an epoch-by-epoch basis is a sufficient condition
for estimating these aggregate measures, it is not a necessary
one and accurate estimates of aggregate quantities can be ob-
tained from models that are less precise on an epoch-by-epoch
basis.

A principal quantity of interest to sleep scientists is N
j
i , the

average number of minutes mice spend in state i during each
2-hr block j of the day. This value can be calculated from EEG/

Table 4. Out-of-sample classification error rates for various external
methods on the three-state NREM versus REM versus WAKE task

Error rate REM rate REM FP REM FN
Method (%) (%) (%) (%)

AdaBoost 17.4 2.7 2.3 89.9
LogitBoost 20.7 4.0 3.7 88.7
Bagged Trees 15.2 1.5 1.2 93.4
MALLET CRF 15.1 3.9 3.3 85.2
TreeCRF 10b; 64l 16.9 3.7 3.4 89.3
MLR+TDGMM 21.9 14.5 13.0 55.8

NOTE: The first column gives the methodology, the second column the overall classification
error rate, the third column the rate of REM prediction, the fourth column the REM false
positive rate, and the fifth column the REM false negative rate.
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Figure 11. Minutes spent in each state. For the two-state SLEEP versus WAKE task (left panel), we compare EEG/EMG-based manual scores
to our video-based MLR+GMM. For the three-state NREM versus REM versus WAKE task (right panel), we compare EEG/EMG-based manual
scores to our video-based MLR+TDGMM.

EMG-based manual scores as

N
j
i = c

8

8∑
m=1

∑
t∈Blockj

I(Ym,t = i),

where Ym,t is the manual score for mouse m at epoch t and
c = 10/60 converts time measured in 10-sec epochs to time
measured in minutes.

Our methodology based on video data can be used to estimate
N

j
i by summing our estimated probabilities γ̂t (i) = P (Yt =

i|X, �̂��) over all epochs t in block j. We average these probabili-
ties over all combinations of one training (in-sample) mouse ×
seven testing (out-of-sample) mice

N̂
j
i = c

8

1

7

8∑
min=1

∑
mout �=min

∑
t∈Blockj

γ̂min,mout,t (i),

where γ̂min,mout,t (i) = P (Ymout,t = i|Xmout , �̂��min ) is the probabil-
ity that mouse mout is in state i at epoch t given covariates from
mouse mout and parameters estimated on mouse min.

This simple estimation is used for our two-state task of clas-
sifying SLEEP versus WAKE. For the more difficult three-state
task of classifying NREM versus REM versus WAKE, we intro-
duce additional parameters wm, which partition the time spent
REM and NREM for each mouse m. Specifically, we have

N̂
j
REM = c

8

1

7

8∑
min=1

∑
mout �=min

∑
t∈Blockj

ŵmin · γ̂min,mout,t (REM)

N̂
j
NREM = c

8

1

7

8∑
min=1

∑
mout �=min

∑
t∈Blockj

[
γ̂min,mout,t (NREM)

+ (1 − ŵmin ) · γ̂min,mout,t (REM)
]
.

We let N̂
j
WAKE remain as before. Each of the wm parameters

lies in [0, 1] and allows the model to “give” a portion of the
time spent in REM to NREM for mouse m. We estimate each
wm on only the in-sample mouse so that our evaluation remains
entirely out of sample.

In Figure 11, we compare the N
j
i from EEG-/EMG-based

manual scoring to the estimated N̂
j
i from our video-based

methodology. We examine the match for both the two-state
task of classifying SLEEP versus WAKE (left panel) and the
three-state task of classifying NREM versus REM versus WAKE

(right panel). For both tasks, our estimated number of minutes
spent in each state provides an excellent match to the number
based on manual scores.

5. DISCUSSION

Our proposed methodology enhances standard statistical
learning methods such as logistic regression and RF to account
for time dependence. This approach is very general in that it can
be used to enhance any statistical learning method that produces
conditional class probability estimates. Our embedding method-
ology for Markov models makes a very rich and general class of
dependence structures computationally feasible and easily es-
timable; although we have focused on first-order Markov mod-
els, generalized Markov models, and TDGMMs, our strategy
can also accommodate higher-order Markov models, variable
length Markov models, and other related models.

When applied to the classification of sleep states in mice
based on video data, our procedure shows increased ability to
discriminate NREM from REM sleep relative to alternative clas-
sification methods. This is a considerable advance over current
approaches used by sleep scientists which can only discrimi-
nate SLEEP from WAKE (Flores et al. 2007; Pack et al. 2007).
Furthermore, our procedure also allows for very accurate as-
sessment of the total amount of NREM sleep, REM sleep, and
wakefulness.

This is an improvement over the current approach to the
assessment of this phenotype in mice which requires (i) surgery
following anesthesia for the insertion of small screws in
the scalp for the assessment of the electroencephalogram;
(ii) insertion of a wire in the neck muscles for assessment of
the electromyogram; (iii) recovery from surgery for several
days; and (iv) assessment of stages of sleep or wakefulness by
direct visual inspection and scoring of 8640 10-sec epochs per
mouse per day. This is expensive, invasive, and time consuming
thereby limiting the number of mice that can be studied. Thus,
our approach has particular benefit when a large number of
mice need to be studied for reasons of, for example, statistical
power.

High-throughput automated scoring has several immediate
applications. First, in studies in which mRNA changes or pro-
tein changes with sleep and wakefulness are being assessed, our
approach is much more cost-effective for estimating sleep states.
Second, there are several new mouse resources for studying the
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genetic basis of behaviors such as sleep including (i) the panel
of Collaborative Cross mice which consists of 300 lines of
mice derived from eight founder strains (Churchill et al. 2004;
Chesler et al. 2008; Collaborative Cross Consortium 2012);
(ii) the panel of Diversity Outbred mice which is based on
random mating of Collaborative Cross mice to provide genetic
heterogeneity (Svenson et al. 2012); and (iii) other large panels
of mice with individual genes knockout [e.g., Skarnes et al.
(2011)]. Our methods could be applied to these large numbers
of genetically heterogeneous mice to assess the genetic basis
of various sleep behaviors. Third, high-throughput scoring
has advantages in screening libraries of compounds to detect
novel drugs that alter sleep and wake. Indeed, high-throughput
scoring based on video data has already been employed in
zebrafish to identify such compounds (Rihel et al. 2009) and the
methodology developed here for mice facilitates this approach
to mammalian species.

In many of aforementioned applications, the focus is on ob-
taining accurate estimates of aggregate measures of sleep as op-
posed to epoch-by-epoch scores. In addition to metrics such as
the amount of time spent in each state at various points through-
out the day, scientists are also interested in estimating quantities
such as the number and typical length of bouts of each state to
understand how they vary across the day (Saper, Scammell, and
Lu 2005), particularly for mice that differ in terms of (i) genetic
background (Mochizuki et al. 2011; Sehgal and Mignot 2011;
Naidoo et al. 2012), (ii) age (Naidoo et al. 2008; Hasan et al.
2012), (iii) level of sleep deprivation (Franken, Malafosse, and
Tafti 1999), and (iv) exposure to various compounds (Vienne
et al. 2010). Our proposed methodology shows the ability to
provide accurate assessments of these aggregate quantities in a
high-throughput setting (McShane et al. 2012).

In addition to these immediate applications, sleep science sug-
gests several potential future applications and enhancements of
our proposed methodology. First, a three-dimensional record-
ing of the mouse using high-definition video cameras as well as
side-angle cameras in addition to overhead cameras would likely
improve the assessment of mouse behavior; in particular, such a
system could likely track breathing as well as the small twitches
that occur in REM sleep, thus yielding improved differentiation
of NREM sleep versus REM sleep on an epoch-by-epoch basis.
Second, augmenting or substituting video data with piezoelec-
tric data (i.e., sensors located in the floor of the mouse cage
that measure pressure changes produced by movement of the
mouse) could yield improved scores as there are (i) highly vari-
able signals during wakefulness as the mouse moves around the
cage and (ii) subtle signals during sleep and its substages that
reflect breathing patterns (Friedman et al. 2004). Augmenting
our model with covariates from both of these sources could po-
tentially allow for the wholesale replacement of manual scoring
as such covariates may be sufficiently precise to allow model-
based error rates to approach the interhuman level of ≈5%.

In conclusion, video-based analyses show the ability to dis-
tinguish REM from NREM sleep in mice. While future elab-
orations of this technological approach could lead to further
improvements in these estimates, high-throughput phenotyping
of sleep in mice is feasible and will facilitate genetic studies and
the investigation of chemical libraries to determine compounds
that affect NREM, REM, and WAKE.

APPENDIX: DISCRIMINITIVE MARKOV ALGORITHMS

In Section 2.3, we introduced a discriminative approach to esti-
mating a Markov model. Here we modify the forward–backward and
Viterbi algorithms to accommodate our discriminative parameter set
�̂�� = (π̂ππ, Â, f̂ff , p̂pp) rather than generative parameter set �̂�� = (π̂ππ, Â, μ̂μμ).
We can use the results of the modified forward–backward algorithms
(Algorithms 1 and 2) to estimate the conditional class probabilities
γ̂t (i) = P (Yt = i|X, �̂��) for each i ∈ S. In particular,

γ̂t (i) = αt (i)βt (i)

P (X1:T = X|�̂��)
= αt (i)βt (i)∑k

j=1 αt (j )βt (j )
.

As with conventional generative Markov models, our maximum likeli-
hood estimate of Yt is Ŷt = arg maxi∈S γ̂t (i) and our maximum likeli-
hood estimate of the sequence YYY = (Y1, . . . , YT ) is given by the Viterbi
Algorithm (Algorithm 3).

Algorithm 1 The Discriminative Forward Algorithm.

Begin with estimates �̂�� = (π̂ππ, Â, f̂ff , p̂pp) and define αt (i) =
P (X1:t , Yt = i|�̂��).

1. Initialization: α1(i) = π̂i
f̂i (xxx1)

p̂i
for i = 1, . . . , k.

2. Induction: αt+1(j ) = [
∑k

i=1 αt (i) · âi,j ]
f̂j (xxxt+1)

p̂j
for t = 1, . . . ,

T − 1.
3. Termination: P (X1:T = X|�̂��) = ∑k

i=1 αT (i).

Algorithm 2 The Discriminative Backward Algorithm.

Begin with estimates �̂�� = (π̂ππ, Â, f̂ff , p̂pp) and define βt (i) =
P (Xt+1:T |Yt = i, �̂��).

1. Initialization: βT (i) = 1 for i = 1, . . . , k.

2. Induction: βt (i) = ∑k
j=1 âi,j βt+1(j )

f̂j (xxxt+1)
p̂j

for t = T − 1, . . . , 1

Algorithm 3 The Discriminative Viterbi Algorithm.

Begin with estimates �̂�� = (π̂ππ, Â, f̂ff , p̂pp) and define δt (i) =
maxY1:t−1 P (Y1:t−1, Yt = i, X1:t |�̂��).

1. Initialization: δ1(i) = π̂i
f̂i (xxx1)

p̂i
and ψ1(i) = 0 for i = 1, . . . , k

2. Recursion:

δt (j ) = maxi=1,...,k[δt−1(i)âi,j ]
f̂j (xxxt )

p̂j

t = 2, . . . , T ; j = 1, . . . , k

ψt (j ) = argmaxi=1,...,k[δt−1(i)âi,j ]
t = 2, . . . , T ; j = 1, . . . , k.

3. Termination: P � = maxi=1,...,k δT (i) and Y �
T = argmaxi=1,...,kδT (i)

4. Path (state sequence) backtracking: Y �
t = ψt+1(Y �

t+1) for t =
T − 1, . . . , 1.

SUPPLEMENTARY MATERIALS

Section 1: Generating Data from Markov Models
Section 2: Estimating Duration Distributions
Additional figures.
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Comment
Kerby SHEDDEN

The article “Modeling Time Series Dependence for Sleep
Scoring in Mice,” henceforth MTD, provides us with the op-
portunity to contrast two approaches to prediction. On the one
hand, we can model the joint distribution P (Y1:T , X1:T ) of the
observed data in detail, motivated by the fact that the Bayes’
rule derived from P is optimal for making predictions. This
approach is exemplified by the use in MTD of estimated con-
ditional distributions P̂ (Yt = y|X1:T ) for prediction of Yt from
the observable X1:T , where P̂ is an estimate of P. On the other
hand, we can frame the problem directly in predictive terms,
expressing Yt as the response variable in a regression model.
This is exemplified by the use in MTD of multinomial logistic
regression (MLR) to capture the conditional relationship of Yt

given Xt .
There is a strong rationale for estimating the Bayes’ rule via

an estimate of the joint distribution P. However, many aspects of
P may be difficult to estimate, and could have little influence on
prediction. Regression approaches focus directly on the aspects
of P that are most relevant for prediction, and hence can manage
the impact of estimation variance on predictive performance. In
MTD, the joint model for Y1:T and X1:T is used to allow for more
flexible transition behavior between the sleep states. However,
this flexibility is only relevant for prediction to the extent that
it impacts the estimated prediction function P̂ (Yt = y|X1:T ).
Alternatively, there are ways to directly increase the flexibility
of a regression relationship, such as by expanding the predictor
variables using basis functions. We will explore this avenue
below.

In MTD, reconstruction of Yt using the estimated Bayes’ rule
obtained from P̂ is shown to substantially outperform logistic
regression in simulation studies, but is only slightly advanta-
geous, at best, in the real data example. This led us to seek to
better understand the role of model specification in settings such
as this where the primary goal is prediction.

1. WINDOWED MLR

The MLR approach used in MTD simply regresses Yt on Xt .
As noted in MTD, this ignores potentially useful information
in the neighboring Xs values. One way to exploit this informa-
tion while remaining within the MLR framework is to regress
Yt on a window of Xs values containing Xt . We assessed the
performance of this “windowed MLR” using as predictors the

Kerby Shedden, Department of Statistics, University of Michigan, Ann Ar-
bor, MI 48104, USA (E-mail: kshedden@umich.edu).

symmetric window Xt−w, . . . , Xt+w, containing 2w + 1 con-
secutive Xs values. The training and validation data Y1:T , X1:T

were simulated according to the model described in Section 3 of
MTD using T = 100 and 1000, with values of σ ranging from
0.5 to 1.5.

Our findings for T = 1000 are shown in Figure 1. The left
panel shows the windowed MLR error rates, and the right panel
shows the error rates relative to the Bayes’ error rate. The error
rates drop substantially when using w > 0 compared to w = 0,
showing the importance of exploiting serial dependence. For
example, in the high signal-to-noise setting σ = 0.5, the error
rate drops from 0.22 when using w = 0 (consistent with MTD
Figure 8) to 0.14 when using w = 5. Figure 8 of MTD shows
that the model-based error rate for this setting is around 0.08.
Thus, more than half of the distance to the model-based meth-
ods is recovered by using the windowed MLR instead of the
simple MLR with w = 0. In the moderate signal-to-noise set-
ting σ = 1.5, windowed MLR achieves an error rate of roughly
0.39, comparable to the error rate of roughly 0.37 achieved by
the MLR+TDGMM method. It is not surprising that the advan-
tage of using the correct data-generating model for prediction
(i.e., the MLR+TDGMM method) is greater when the signal is
stronger.

We carried out similar studies for T = 100. When σ = 0.5,
MLR using w = 0 gives an error rate of 0.24 (consistent with
MTD figure 8), but this can be reduced to 0.19 using w = 1. The
model-based approaches of MTD produce error rates between
0.11 and 0.14, depending on the model (MTD Figure 8).

To further understand the windowed MLR approach, we
examined the coefficient estimates for the case w = 6. The
MLR approach fits the model P (Y = k|X = x) ∝ exp(β ′

kx) for
k = 1, 2, 3, where β1 ≡ 0 for identification. Here, X represents
a window of 13 values centered around the value that is contem-
poraneous with Y , along with an intercept. This can be viewed as
a two index model that captures the conditional probabilities of
Yt in terms of linear predictors β ′

j X̃t , j = 2, 3, where X̃t is the
window of 2w + 1 = 13 values of Xs centered on Xt . We first
estimated β∗

j ≡ Eβ̂j , j = 2, 3 by averaging the β̂j over 200
replicate samples obtained from the model described in Sec-
tion 3 of MTD, with T = 1000. Since we wished to focus on
the structure of the linear predictors, rather than the link to the
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