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ABSTRACT
Over the last decade, large-scale replication projects across the biomedical and social sciences have
reported relatively low replication rates. In these large-scale replication projects, replication has typically
been evaluated based on a single replication study of some original study and dichotomously as successful
or failed. However, evaluations of replicability that are based on a single study and are dichotomous are
inadequate, and evaluations of replicability should instead be based on multiple studies, be continuous,
and be multi-faceted. Further, such evaluations are in fact possible due to two characteristics shared by
many large-scale replication projects. In this article, we provide such an evaluation for two prominent large-
scale replication projects, one which replicated a phenomenon from cognitive psychology and another
which replicated 13 phenomena from social psychology and behavioral economics. Our results indicate
a very high degree of replicability in the former and a medium to low degree of replicability in the latter.
They also suggest an unidenti!ed covariate in each, namely ocular dominance in the former and political
ideology in the latter, that is theoretically pertinent. We conclude by discussing evaluations of replicability at
large, recommendations for future large-scale replication projects, and design-based model generalization.
Supplementary materials for this article are available online.

ARTICLE HISTORY
Received July 2021
Accepted February 2022

KEYWORDS
Factor analysis;
Meta-analysis; Multilevel;
Multivariate; Psychology;
Replicability; Replication

1. Introduction

Over the last decade, researchers across the biomedical and
social sciences have raised concern about the replicability of
research studies. For example, they have reported replication
rates of only about one-quarter for pharmaceutical develop-
ment studies (Prinz, Schlange, and Asadullah 2011), one-tenth
for cancer research studies (Begley and Ellis 2012), one-third
for psychological research studies (Open Science Collaboration
2015), six-tenths for economics research studies (Camerer et al.
2016), and sixth-tenths for research studies across the social
sciences (Camerer et al. 2018). In these large-scale replication
projects, replication has typically been evaluated based on a
single replication study of some original study and dichoto-
mously as successful or failed. Further, this dichotomization
has typically been made based on criteria rooted in the null
hypothesis signi!cance testing paradigm, with the most popular
criterion being that the replication study is considered to have
successfully replicated the original study if either both failed
to attain “statistical signi!cance” or both attained “statistical
signi!cance” and were directionally consistent and to have failed
to replicate the original study otherwise.

However, evaluations of replicability that are based on a sin-
gle study and are dichotomous are inadequate, and evaluations
of replicability should instead be based on multiple studies, be
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continuous, and be multi-faceted (McShane et al. 2019). Further,
such evaluations are in fact possible due to two characteristics
shared by many large-scale replication projects, including the
various Registered Replication Reports (RRRs) and the various
Many Labs Projects (MLPs).

The !rst characteristic is that many large-scale replication
projects are multilevel in nature in that the same phenomenon
(e.g., RRRs) or the same phenomena (e.g., MLPs) are inves-
tigated across multiple labs (i.e., the same study materials are
administered in a coordinated but separate fashion at each lab to
di"erent subjects). The multilevel nature of these projects allows
for an evaluation of replicability that is based on multiple studies
and is continuous, in particular, a quanti!cation of the variation
in the estimates from lab to lab involved in the project.

The second characteristic is that many large-scale replication
projects are multivariate in nature in that they feature multiple
experimental conditions and o#en feature multiple dependent
measures. The multivariate nature of these projects allows for
an evaluation of replicability that is multi-faceted, in particular,
a quanti!cation of the variation in the estimates of each variate
(i.e., a particular dependent measure as assessed in a particular
experimental condition) as well as each e!ect of interest (i.e., a
contrast of a particular dependent measure as assessed across
multiple experimental conditions). The multivariate nature also
allows for these quanti!cations at not only the lab level but
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also the subject level. The multivariate nature !nally allows for
the quanti!cation of not only the variation in the estimates
of variates and e"ects at these levels but also the covariation,
which can facilitate the identi!cation of covariates that cause or
associate with the variation.

In sum, many large-scale replication projects not only allow
for but demand eight quanti!cations relevant for evaluating
replicability, namely that of the variation and covariation in
variates and e"ects at the lab and subject levels. However, this
opportunity for quanti!cation has gone almost entirely unreal-
ized because the typical approach to the analysis of the data from
these projects is highly impoverished. Speci!cally, the typical
approach has been to (a) collapse the subject level data to a single
estimate of each e"ect for each lab and dependent measure
and (b) analyze the estimates of each e"ect separately for each
dependent measure via the basic !xed e"ects or random e"ects
meta-analytic model. This approach provides no more than one
of the eight quanti!cations relevant for evaluating replicability.
In particular, analysis via the !xed e"ects meta-analytic model
foregoes providing all eight quanti!cations while analysis via the
random e"ects meta-analytic model provides a quanti!cation of
the variation in e"ects at the lab level and foregoes providing the
other seven quanti!cations.

In this article, we provide all eight quanti!cations relevant
for evaluating replicability for two prominent large-scale
replication projects. Speci!cally, we provide them for an RRR
which replicated the attentional spatial-numerical association
of response codes (Att-SNARC) phenomenon (Colling et al.
2020), a phenomenon from cognitive psychology. Our results
indicate very low variation and very high covariation in variates
across both labs and subjects; trivial variation and covariation
in e"ects across both labs and subjects; and a very high degree of
replicability for all variates and e"ects. Further, the variation and
covariation suggests an unidenti!ed covariate, namely ocular
dominance, that is theoretically pertinent.

We also provide them for the original MLP (Klein et al.
2014) which replicated 13 phenomena from social psychology
and behavioral economics. Our results indicate medium to high
variation and covariation in variates across both labs and sub-
jects; medium to high variation in e"ects across labs; low to
high variation in e"ects across subjects; relatively low covaria-
tion in e"ects across both labs and subjects; and a medium to
low degree of replicability depending on the variate or e"ect.
Further, the variation and covariation suggests an unidenti!ed
covariate, namely political ideology, that is theoretically perti-
nent. Finally, the variation and covariation also suggests three
insights regarding Anchoring, one of the phenomena investi-
gated by the MLP.

To quantify the variation and covariation in variates and
e"ects at the lab and subject levels, we introduce a multilevel
multivariate modeling framework for analyzing all of the subject
level data from large-scale replication projects jointly in a single
analysis. Our framework employs a factor analytic structure for
the variance-covariance matrices at the lab and subject levels
that is specially tailored to the design of these projects. Specif-
ically, the factor analytic structure is constrained based on the
design of these projects. This results in three distinct advantages.
First, it is interpretable. For example, the estimates of the factor
loadings facilitated the identi!cation of the ocular dominance

covariate in the Att-SNARC RRR and the political ideology
covariate in the MLP. Second, it is adaptable. For example, it
can accommodate settings where all of the dependent measures
are repeated measures of the same phenomenon as in the Att-
SNARC RRR as well as settings where most are single measures
of distinct phenomena but several are repeated measures of the
same phenomenon as in the MLP. Third, it is parsimonious. This
is necessary because there is little data at each level relative to the
size of the variance-covariance matrices (i.e., in large-scale repli-
cation projects, the number of labs and the number of observa-
tions per subject is small relative to the size of these matrices).

Our modeling framework builds on and extends prior work
on multilevel multivariate meta-analytic models and factor ana-
lytic structures for the variance-covariance matrices of multi-
level multivariate models (see, e.g., Kalaian and Raudenbush
1996; Berkey et al. 1998; and McShane and Böckenholt 2018
for the former and Muthén 1994 and Rabe-Hesketh, Skrondal,
and Pickles 2004 for the latter). It is su$ciently general to
accommodate an arbitrary number of phenomena, dependent
measures, experimental conditions, levels, and covariates at any
level. It will prove useful for the analysis of the data from past
and future large-scale replication projects.

In the remainder of this article, we quantify the variation and
covariation in variates and e"ects at the lab and subject levels for
the Att-SNARC RRR and the MLP. We conclude by discussing
evaluations of replicability at large, recommendations for
future large-scale replication projects, and design-based model
generalization.

2. Att-SNARC RRR

2.1. Description

The Att-SNARC RRR is a large-scale replication of the Att-
SNARC phenomenon (Fischer et al. 2003), which purports that
subjects react more quickly to targets that appear on the le#
when the targets are preceded by small numbers and react more
quickly to targets that appear on the right when the targets are
preceded by large numbers. The importance of the Att-SNARC
phenomenon derives from two facts considered in tandem.
First, one of the foundational issues in cognitive psychology
is how individuals represent concepts, for which there are two
broad accounts: (a) classical ones that view these representations
as symbolic (i.e., the representations do not capture charac-
teristics of what they represent) and distinct from sensorimo-
tor processing (see, e.g., Fodor 1975 and Newell and Simon
1976) and (b) alternative ones—termed embodied, situated, or
grounded—which view them as analogical (i.e., the represen-
tations do capture characteristics of what they represent) and
intimately linked to sensorimotor processing (see, e.g., Wilson
2002; Gładziejewski and Miłkowski 2017; and Williams and
Colling 2018). Second, numerical cognition is regarded as the
“prime example of embodied cognition,” and spatial-numerical
associations including the Att-SNARC phenomenon provide
the key evidence for that claim (Fischer and Brugger 2011). As
such, the Att-SNARC phenomenon has been used as evidence
for embodied number representations and to support strong
claims—dating from at least as early as Galton (1880)—about
the link between number and space (e.g., a mental number line).
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The Att-SNARC RRR involved 48 researchers and 1105 sub-
jects across 17 labs and featured four dependent measures and
four experimental conditions for a total of 16 variates. The four
dependent measures were all reaction times assessed in millisec-
onds (ms) and averaged over 40 trials; they di"ered with respect
to the time delay between the removal of the number and the
appearance of the target, with delays of 250, 500, 750, and 1000
ms, respectively. The experimental conditions followed a two-
by-two design, with the target appearing on the le# or the right
and the number being small or large. Each subject was assigned
to all four of the experimental conditions, and all four dependent
measures were assessed for each experimental condition for
each subject. The e"ects of interest were the interaction e"ect
for each dependent measure.

2.2. Model

Let i index subjects; v index variates; yi,v denote the observation
for subject i and variate v; l[i] denote the lab l at which subject
i was observed; and d[v] denote the dependent measure associ-
ated with variate v. Our model speci!cation for the yi,v is given
by

yi,v = αv + βl[i],v + γi,v + εi,v (1)

where the αv are treated as !xed e"ects for each variate; the βl,v
are treated as random e"ects for each lab and variate; the γi,v are
treated as random e"ects for each subject and variate; and the
εi,v are random errors for each subject and variate.

Letting β l denote the vector of βl,v for each lab and γ i
denote the vector of γi,v for each subject, we assume that the
β l are independent and identically distributed according to the
multivariate normal distribution with mean zero and variance-
covariance matrix Tβ ; the γ i are independent and identically
distributed according to the multivariate normal distribution
with mean zero and variance-covariance matrix Tγ ; the εi,v
are independent and distributed according to the normal dis-
tribution with mean zero and variance σ 2

d[v]; and there is zero
covariation among the β l, γ i, and εj,v for all l, i, j, and v.

To model Tβ and Tγ , we employ a three-factor structure for
each. The !rst factor has loadings that are constrained to be
equal for all variates; the second factor has loadings that are
constrained to be equal for all variates associated with a given
dependent measure (i.e., the experimental conditions associated
with the dependent measure) but that can vary across variates
associated with di"erent dependent measures; and the third
factor has loadings that are unconstrained and thus can vary
across all variates. Consequently, we refer to these, respectively,
as the intercept factor, the dependent measure factor, and the
variate factor.

To be speci!c, our model speci!cation for the βl,v is given by

βl,v = ϕ
β
l,1 + ϕ

β
l,2λ

β
1,d[v] + ϕ

β
l,3λ

β
2,v + η

β
l,v

where the ϕ
β
l,. are factor scores for each lab; λ

β
1,d is a factor

loading for each dependent measure; λ
β
2,v is a factor loading

for each variate; and η
β
l,v is an idiosyncratic term for each lab

and variate. Letting ϕ
β
l denote the vector of ϕ

β
l,. for each lab

and η
β
l denote the vector of η

β
l,v for each lab, we assume that

the ϕ
β
l are independent and identically distributed according

to the multivariate normal distribution with mean zero and
variance-covariance matrix %ϕ,β ; the η

β
l are independent and

identically distributed according to the multivariate normal dis-
tribution with mean zero and variance-covariance matrix %η,β ,
which allows covariance only across variates associated with
a given dependent measure but not across variates associated
with di"erent dependent measures; and there is zero covari-
ation among the ϕ

β
l and η

β
m for all l and m. Consequently,

Tβ = &β%ϕ,β&T
β + %η,β where &β is the matrix with rows

[1, λβ
1,d[v], λ

β
2,v].

Our model speci!cation for the γi,v is nearly identical to the
above. Speci!cally, it is given by

γi,v = ϕ
γ
i,1 + ϕ

γ
i,2λ

γ
1,d[v] + ϕ

γ
i,3λ

γ
2,v (2)

where all is mutatis mutandis as above but the analogue of η
β
l,v is

omitted because variates were observed no more than once for
each subject. Consequently, Tγ = &γ %ϕ,γ &T

γ .
We estimate our model in Stan (Carpenter et al. 2017) using

the default settings, the default weakly informative priors given
in the Stan User’s Guide (Stan Development Team 2020), and
redundant parameterization with identi!ability constraints
(e.g., factor loadings to have zero mean and unit standard
deviation) imposed ex post (McCulloch and Rossi 1994; Gelman
et al. 2008). We resolve re&ection invariance using the method
of Erosheva and Curtis (2017).

2.3. Results

2.3.1. Principal Results
Our focus is on quantifying the variation and covariation in
variates and e"ects at the lab and subject levels. The variation
and covariation in variates is modeled by Tβ at the lab level
and by Tγ at the subject level, and the variation and covariation
in e"ects is modeled by these respective matrices at each level
in conjunction with the contrast matrix corresponding to the
e"ects. Consequently, we focus our discussion of results on
estimates of these quantities noting that we expect the variation
and covariation in variates to be higher than that in e"ects due
to the zero-sum nature of contrasts.

We begin by discussing the estimates of the (scaled) factor
loadings at the lab level (i.e., the elements of &β scaled by the
square root of the associated diagonal element of %ϕ,β so as to
be in ms units), which we present in Figure 1. First, the intercept
factor loading estimate indicates common covariation of 16 ms
across all variates and subjects within a given lab.1 To put this in
context, 16 ms is about 1.21 times the error standard deviation
σd (the estimates of which range from 12 to 14 ms across the
four dependent measures). Because the subject populations did
not di"er across the labs involved in the Att-SNARC RRR (all
were university students), we believe this re&ects lab di"erences
in equipment. Second, the dependent measure factor loading
estimates have a monotone nature, which indicates that the
degree of the covariation between the variates associated with
one dependent measure and the variates associated with another

1All estimates discussed in the text are posterior median estimates rounded
to the nearest integer for those given in ms and ms2 units and to two
decimal places for those given in all other units.
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Figure 1. Att-SNARC RRR lab level factor loading estimates. Posterior median estimates are given by the points; 50% and 95% equal-tailed posterior interval estimates are
given by the thick and thin lines, respectively.

Figure 2. Att-SNARC RRR subject level factor loading estimates. Posterior median estimates are given by the points; 50% and 95% equal-tailed posterior interval estimates
are given by the thick and thin lines, respectively.

dependent measure decreases as the magnitude of the di"erence
of the time delays of the two dependent measures increases
(i.e., because estimates of the same (di"erent) sign indicate
stronger (weaker) covariation). Third, the variate factor loading
estimates are nearly identical for all variates associated with
each dependent measure. Further, they vary across dependent
measures in a manner that is similar to those of the dependent
measure factor. Finally, they are very small in magnitude. These
results indicate that this factor is not necessary here.

We now discuss the estimates of the variation and covariation
in the idiosyncratic terms for each lab and variate (i.e., %η,β). In
short, these are trivial. Speci!cally, the estimates of the variation
(i.e., the square roots of the diagonal elements of %η,β) range
from 0 to 2 ms across the 16 variates and the estimates of the
covariation (i.e., the o"-diagonal elements of %η,β) range from
0 to 1 ms2 across the pairs of variates.

We now discuss the estimates of the factor loadings at the
subject level (i.e., &γ scaled by %γ as done above at the lab
level), which we present in Figure 2. First, the intercept factor
loading estimate indicates common covariation of 44 ms across
all variates for a given subject. To put this in context, 44 ms
is about 3.41 times σd. We believe this re&ects individual dif-
ferences in reaction times (i.e., that some individuals generally

react more quickly while others generally react more slowly).
Second, the dependent measure factor loading estimates are
again a monotone function of the dependent measures. Third,
the variate factor loading estimates are nearly identical for the
eight variates associated with experimental conditions with the
target appearing on the le# and so too for the eight variates asso-
ciated with experimental conditions with the target appearing
on the right; also, all 16 are nearly identical in magnitude. This
indicates stronger (weaker) covariation in variates with targets
appearing on the same (di"erent) side. We believe this re&ects
individual di"erences in ocular dominance (i.e., eye preference
or eyedness, the tendency to prefer visual input from one eye to
the other; see Section 2.3.2).

We now discuss the estimates of the variation and covaria-
tion in variates at the lab and subject levels (i.e., Tβ and Tγ ,
respectively), which aggregate across the estimates discussed
above. The estimates of the variation (i.e., the square roots of the
diagonal elements of Tβ and Tγ ), which we present in the le#
panel of Figure 3, are highly similar and very low at each level,
ranging from 15 to 17 ms across the 16 variates at the lab level
and from 44 to 48 ms across the 16 variates at the subject level.
Further, because the intercept factor is the dominant factor at
both levels (see Figures 1 and 2), the estimates of the covariation
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Figure 3. Att-SNARC RRR variation estimates. Posterior median estimates are given
by the points; 50% and 95% equal-tailed posterior interval estimates are given by
the thick and thin lines, respectively.

(i.e., the o"-diagonal elements of Tβ and Tγ ) are very high
at each level, ranging from 225 to 274 ms2 across the pairs of
variates at the lab level and from 1824 to 2336 ms2 across the
pairs of variates at the subject level; this corresponds to estimates
of the correlation which range from 0.91 to 1.00 across the pairs
of variates at the lab level and from 0.86 to 1.00 across the pairs
of variates at the subject level.

As noted above, the e"ects of interest in the Att-SNARC RRR
were the interaction e"ect for each dependent measure. Thus,
we now discuss the estimates of the variation and covariation
in e"ects at the lab and subject levels (i.e., CTβCT and CTγ CT,
respectively, where C is the contrast matrix corresponding to the
e"ects). The estimates of the variation (i.e., the square roots of
the diagonal elements of CTβCT and CTγ CT), which we present
in the right panel of Figure 3, are highly similar and trivial at
each level, ranging from 2 to 3 ms across the four e"ects at the
lab level and all 1 ms for the four e"ects at the subject level. Given
this trivial degree of variation, the estimates of the covariation

(i.e., the o"-diagonal elements of CTβCT and CTγ CT) are also
trivial, all 0 ms2 for the pairs of e"ects at the lab level and all 0
ms2 for the pairs of e"ects at the subject level.

2.3.2. Ocular Dominance Results
As noted above in our discussion of Figure 2, the variate factor
loading estimates at the subject level appear to re&ect individual
di"erences in ocular dominance. To probe this would require an
assessment of ocular dominance. While ocular dominance was
not assessed in the Att-SNARC RRR, handedness—a proxy for
ocular dominance (Bourassa, McManus, and Bryden 1996)—
was. This suggests expanding the model to include handedness.

We do so by replacing the variate factor loading λ
γ
2,v in

Equation (2) with xi,v, which is de!ned to be one for le#-handed
subjects for variates associated with experimental conditions
with the target appearing on the le# and for right-handed sub-
jects for variates associated with experimental conditions with
the target appearing on the right (i.e., subject handedness and
variate target-side match) and negative one for le#-handed sub-
jects for variates associated with experimental conditions with
the target appearing on the right and for right-handed subjects
for variates associated with experimental conditions with the
target appearing on the le# (i.e., subject handedness and variate
target-side do not match). We also, as is customary, add αxi,v to
Equation (1).

We note that xi,v in Equation (2) can be understood as a
variate factor that has loadings that are fully constrained, namely
to be equal to negative (positive) one for variates associated with
experimental conditions with the target appearing on the le#
(right) for right-handed subjects and vice versa for le#-handed
subjects. With that understanding, we now discuss the estimates
of the factor loadings at the subject level (i.e., &γ scaled by %γ

as done above), which we present in Figure 4. The estimates
are remarkably similar to those presented in Figure 2 thereby
supporting the notion that the variate factor loading estimates
in that original !gure re&ect individual di"erences in ocular
dominance.

We note that given this similarity, it is unsurprising that
estimates of the variation and covariation in variates and e"ects
also remain similar to those discussed above. Speci!cally, the

Figure 4. Att-SNARC RRR subject level factor loading estimates with fully constrained variate factor loadings. Posterior median estimates are given by the points; 50% and
95% equal-tailed posterior interval estimates are given by the thick and thin lines, respectively.
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Figure 5. Att-SNARC RRR lab atypicality estimates. Posterior median estimates are given by the points; 50% and 95% equal-tailed posterior interval estimates are given by
the thick and thin lines, respectively. Labs are sorted by the posterior median estimate of the variate atypicality.

analogue of the estimates of the factor loadings at the lab level
remain similar to those presented in Figure 1 and the analogue
of the estimates of the variation in variates and e"ects at the lab
and subject levels remain similar to those presented in Figure 3.
We also note that the estimate of α is −1 ms indicating that
reaction times are trivially quicker when subject handedness
and variate target-side match.

2.3.3. Evaluation of Replicability
The estimates of the variation in variates and e"ects at the lab
level presented in Figure 3 provide a multi-study, continuous,
multi-faceted evaluation of replicability that indicates a very
high degree of replicability for all variates and e"ects. Speci!-
cally, the estimates of the variation in variates at the lab level
are very low ranging from, as noted above, 15 to 17 ms across
the 16 variates; further, because the estimates of the covariation
in variates at the lab level are very high, the low variation is
likely to be driven by a common cause such as lab di"erences
in equipment as suggested above. Additionally, the estimates of
the variation in e"ects at the lab level are trivial ranging from,
as noted above, 2 to 3 ms across the four e"ects.

To further evaluate the variation in the estimates of variates
and e"ects across labs, we examine the atypicality of the esti-
mates from each lab. We estimate this atypicality by computing
the root mean square error of the lab level estimates of the
variates (i.e., the βl,v) and the e"ects (i.e., contrasts of the βl,v),
which we present in Figure 5. The estimates suggest that no lab
is atypical in terms of either variates or e"ects.

3. MLP

3.1. Description

The MLP is a large-scale replication of 13 phenomena from
social psychology and behavioral economics. We present 12

of these phenomena along with their associated dependent
measures and experimental conditions in Table 1.2 These
phenomena are among some of the most important in these
!elds. For example, the Currency Priming and Flag Priming
phenomena are examples of social priming, one of the most
prominent subdomains of social psychology. Similarly, the
Sunk Costs phenomenon and the concomitant fallacy are foun-
dational to rational decision-making in classical economics.
Finally, the 2002 Sveriges Riksbank Prize was awarded for,
among other things, work on the Gain versus Loss Framing
and Anchoring phenomena.

The MLP involved 51 researchers and 6344 subjects across
36 labs and featured 15 dependent measures and two exper-
imental conditions per dependent measure for a total of 30
variates. However, because the MLP investigated many phe-
nomena whereas the Att-SNARC RRR investigated only a single
phenomenon, there are several di"erences in the dependent
measures and experimental conditions in the MLP as compared
to those in the Att-SNARC RRR. First, whereas the dependent
measures in the Att-SNARC RRR were conceptually similar and
assessed in the same units, the dependent measures in the MLP
were conceptually distinct and were assessed in a variety of units
on a variety of scales, including four binary (i.e., the depen-
dent measures associated with the Gain versus Loss Framing,
Low versus High Category Scales, Allowed versus Forbidden,
and Norm of Reciprocity phenomena) and two ordinal (i.e.,
the dependent measures associated with the Sunk Costs and
Quote Attribution phenomena). Second, whereas the experi-
mental conditions were the same across the dependent measures

2The MLP reused the dependent measure associated with the Sex Di"erences
in Implicit Math Attitudes phenomenon in an analysis of a thirteenth
phenomenon, Relations Between Implicit and Explicit Math Attitudes, that
had no experimental condition associated with it; we do not consider that
phenomenon here.
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Table 1. MLP phenomena, dependent measures, and experimental conditions.

Phenomenon Dependent measure Experimental conditions

Gain versus Loss Framing Binary choice of deterministic versus stochastic option People will die, people will be saved
Retrospective Gambler Fallacy Estimate of how many times a man had rolled dice Two sixes, three sixes
Sex Di!erences in Implicit Math
Attitudes

Implicit Association Test of attitudes toward math compared to arts Female, male

Sunk Costs Likelihood of attending a football game on an integer scale ranging
from one to nine

Free, paid

Quote Attribution Agreement with a quotation on an integer scale ranging from one to
nine

Liked source, disliked source

Low versus High Category Scales Binary coded report of daily television watching (greater than versus
less than two and a half hours)

Low category scale, high category scale

Allowed versus Forbidden Binary choice of whether the local country should allow versus forbid
speeches against democracy

Forbidden, allowed

Currency Priming Eight item system justi"cation scale No prime, money prime
Imagined Contact Four item scale indicating interest and willingness to interact with

Muslims
Contact, control

Norm of Reciprocity Binary choice of whether the local country should allow versus forbid
North Korean newspapers to come in and send back the news as they
see it

Asked second, asked "rst

Flag Priming Eight item questionnaire assessing views toward various political issues
(e.g., abortion, gun control, a#rmative action)

No prime, $ag prime

Anchoring Distance from San Francisco to New York City High anchor, low anchor
Number of babies born per day in the United States
Population of Chicago
Height of Mount Everest

NOTE: Phenomena are sorted as discussed in the caption to Figure 8.

in the Att-SNARC RRR, the experimental conditions varied—
and were also conceptually distinct—across the dependent mea-
sures in the MLP. That said, four of the dependent measures
in the MLP were repeated measures of the same phenomenon
(i.e., Anchoring). Further, these four dependent measures were
conceptually similar (although assessed in di"erent units) and
the experimental conditions were the same across them as in
the Att-SNARC RRR.

There are two additional di"erences between the MLP and
the Att-SNARC RRR. First, whereas each subject was assigned
to all four of the experimental conditions and all four dependent
measures were assessed for each experimental condition for
each subject in the Att-SNARC RRR, each subject was randomly
assigned to only one of the two experimental conditions asso-
ciated with each dependent measure and thus the dependent
measure was assessed for only this experimental condition for
the subject in the MLP.3 Second, whereas the e"ects of interest
were the interaction e"ect for each dependent measure in the
Att-SNARC RRR, the e"ects of interest were the simple e"ect
for each dependent measure in the MLP.

3.2. Model

We extend our model speci!cation for the Att-SNARC RRR
to accommodate two prominent characteristics of the MLP,
namely that (a) the dependent measures were assessed in a

3There was one exception: the experimental condition for the dependent
measure associated with the Sex Di"erences in Implicit Math Attitudes
phenomenon was sex, which was of course not randomly assigned. We
also note that the order in which the phenomena were presented was
randomized, with the exception that the Sex Di"erences in Implicit Math
Attitudes phenomenon was always presented last, and that the four depen-
dent measures associated with the Anchoring phenomenon were always
presented in the order distance from San Francisco to New York City,
population of Chicago, height of Mount Everest, number of babies born
per day in the United States with subjects randomly assigned to the high
anchor or low anchor condition separately for each of the four dependent
measures.

variety of units on a variety of scales and (b) four of the
dependent measures were repeated measures of the same
phenomenon (i.e., Anchoring).

To accommodate the variety of units, we standardize by σd;
to accommodate the variety of scales, we employ the generalized
linear model. Speci!cally, we introduce y)

i,v and let yi,v = y)
i,v

if the dependent measure associated with variate v is treated as
continuous; yi,v = 1(y)

i,v > 0) and σ 2
d[v] = 1 if the dependent

measure associated with variate v is binary; and yi,v = k if
cd[v],k−1 < y)

i,v ≤ cd[v],k, σ 2
d[v] = 1, cd[v],0 = −∞, and

cd[v],Kd[v] = ∞ where Kd[v] is the maximum possible value of
yi,v and the cd,k are treated as !xed e"ects for each dependent
measure and value if the dependent measure associated with
variate v is ordinal (i.e., binary and ordinal dependent measures
are modeled according to the binary and ordinal probit spec-
i!cations, respectively). Our model speci!cation for the y)

i,v is
given by

y)
i,v = σd[v](αv + βl[i],v + γi,v) + εi,v (3)

where everything is treated as in the Att-SNARC RRR model
speci!cation. We employ the two-parameter Box-Cox transfor-
mation for dependent measures treated as continuous (Box and
Cox 1964). We also align the dependent measures by reverse-
coding those associated with the Gain versus Loss Framing,
Sex Di"erences in Implicit Math Attitudes, Quote Attribution,
Imagined Contact, Norm of Reciprocity, and Anchoring phe-
nomena.

To accommodate the repeated measures of the Anchoring
phenomenon, we introduce additional factors. A natural man-
ner of doing so would be to add to the three-factor structure
used in the Att-SNARC RRR an analogous three-factor structure
for the variates associated with the Anchoring phenomenon.
This would imply employing a factor structure consisting of
the baseline three factors that apply to all 30 variates (i.e., the
intercept factor, the dependent measure factor, and the variate
factor) plus an additional three factors that apply to only the
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eight variates associated with the Anchoring phenomenon (i.e.,
an Anchoring intercept factor, an Anchoring dependent mea-
sure factor, and an Anchoring variate factor).

However, because the experimental conditions are the
same across the four dependent measures associated with the
Anchoring phenomenon, the Anchoring intercept factor can
be extended so that the loadings vary across the experimental
conditions. Therefore, we employ a factor structure consisting
of the baseline three factors that apply to all 30 variates
plus an additional four factors that apply to only the eight
variates associated with the Anchoring phenomenon (i.e., a
high anchor condition Anchoring intercept factor, a low anchor
condition Anchoring intercept factor, an Anchoring dependent
measure factor, and an Anchoring variate factor) at the lab level.
Speci!cally, our model speci!cation for the βl,v is given by

βl,v = ϕ
β
l,1 + ϕ

β
l,2λ

β
1,d[v] + ϕ

β
l,3λ

β
2,v +

(
ϕ

β
l,41(c[v] = 1)

+ ϕ
β
l,51(c[v] = 2) + ϕ

β
l,6λ

β
3,d[v] + ϕ

β
l,7λ

β
4,v

)
· 1A(v) + η

β
l,v

where 1(x) is de!ned to be one if x is true and zero otherwise;
c[v] denotes the experimental condition associated with variate
v; and 1A(v) is de!ned to be one if variate v is associated with
the Anchoring phenomenon and zero otherwise.

This factor structure is not identi!ed at the subject level.
Speci!cally, the additional four factors that apply to only the
eight variates associated with the Anchoring phenomenon are
not identi!ed because there are only four observations of the
phenomenon per subject (i.e., one for each of the four depen-
dent measures associated with the phenomenon). Therefore,
we instead employ a factor structure consisting of the baseline
three factors that apply to all 30 variates plus an additional two
factors that apply to only the eight variates associated with the
Anchoring phenomenon (i.e., an Anchoring intercept factor and
an Anchoring variate factor) at the subject level. Speci!cally, our
model speci!cation for the γi,v is given by

γi,v = ϕ
γ
i,1 + ϕ

γ
i,2λ

γ
1,d[v] + ϕ

γ
i,3λ

γ
2,v + (ϕ

γ
i,4 + ϕ

γ
i,5λ

γ
3,v) · 1A(v).

We estimate our model as in the Att-SNARC RRR.

3.3. Results

3.3.1. Principal Results
Because our focus is on quantifying the variation and covari-
ation in variates and e"ects at the lab and subject levels, we
focus our discussion of results on estimates of these quantities.
We begin by discussing the estimates of the (scaled) factor
loadings at the lab level (i.e., the elements of &β scaled by
the square root of the associated diagonal element of %ϕ,β
so as to be in error standard deviation σd units), which we
present in Figure 6. First, the intercept factor loading esti-
mate indicates common covariation of 0.09 σd across all vari-
ates and subjects within a given lab; this is surprisingly large
given that one of the criteria on which the phenomena inves-
tigated by the MLP were chosen was diversity and suggests
that the variates associated with these phenomena may not
in fact be so diverse. Second, the dependent measure factor
loading estimates are most prominent for the dependent mea-
sures associated with the Currency Priming, Norm of Reci-
procity, and Flag Priming phenomena; notably, all three of these

dependent measures relate to political ideology (see Table 1
and Section 3.3.2). Third, the variate factor loading estimates
show no clear pattern; this is perhaps not unsurprising given
that the dependent measures and experimental conditions asso-
ciated with the variates are conceptually distinct. Fourth, the
Anchoring intercept factor loading estimates indicates addi-
tional common covariation of 0.08 (high anchor condition) and
0.09 (low anchor condition) σd across the variates associated
with the Anchoring phenomenon and subjects within a given
lab. Fi#h, the Anchoring dependent measure factor loading
estimates are all very small in magnitude thereby indicating
this factor is not necessary here; insofar as the four dependent
measures associated with the Anchoring phenomenon are in
fact exchangeable measures of it, this is unsurprising because
the Anchoring intercept factors would account for any com-
mon covariation. Sixth, the Anchoring variate factor loading
estimates di"er in a manner that is consistent with the exper-
imental condition and those for the variates associated with the
dependent measure regarding the height of Mount Everest are
largest in magnitude.

We now discuss the estimates of the factor loadings at the
subject level (i.e., &γ scaled by %γ as done above at the lab
level), which we present in Figure 7. First, the intercept fac-
tor loading estimate indicates common covariation of 0.24 σd
across all variates for a given subject; again, this is surprisingly
large given that one of the criteria on which the phenomena
investigated by the MLP were chosen was diversity and suggests
that the variates associated with these phenomena may not in
fact be so diverse. It may also suggest individual di"erences in
response styles. Second, the dependent measure factor loading
estimates are entirely dominated by the dependent measure
associated with the Flag Priming phenomenon; as noted above,
this dependent measure relates to political ideology. Third, the
variate factor loading estimates show no clear pattern although
they are most prominent for the variates associated with the
Imagined Contact, Norm of Reciprocity, and Flag Priming phe-
nomena; notably, the dependent measures associated with all
three of these phenomena relate to political ideology. Fourth, the
Anchoring intercept factor loading estimate indicates additional
common covariation of 0.32 σd across the variates associated
with the Anchoring phenomenon for a given subject. Fi#h, the
Anchoring variate factor loading estimates di"er in a manner
that is consistent with the experimental condition and those for
the variates associated with the dependent measure regarding
the height of Mount Everest are largest in magnitude.

We now discuss the estimates of the variation and covariation
in variates at the lab and subject levels (i.e., Tβ and Tγ , respec-
tively). The estimates of the variation (i.e., the square roots of
the diagonal elements of Tβ and Tγ ), which we present in the
le# panel of Figure 8, are medium to high at each level, ranging
from 0.11 to 0.69 σd across the 30 variates with a median of
0.24 σd at the lab level and ranging from 0.13 to 1.11 σd across
the 30 variates with a median of 0.36 σd at the subject level.
The estimates of the covariation (i.e., the o"-diagonal elements
of Tβ and Tγ ) are also medium to high across the pairs of
variates at each level. For the variates not associated with the
Anchoring phenomenon, this covariation is driven by the fact
that many of the factor loading estimates that were most promi-
nent were for variates associated with dependent measures that
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Figure 8. MLP variation estimates. Posterior median estimates are given by the points; 50% and 95% equal-tailed posterior interval estimates are given by the thick and
thin lines, respectively. Phenomena other than the Anchoring phenomenon and the dependent measures associated with the Anchoring phenomenon are separately
sorted by the posterior median estimate of the variation summed across the associated variates (i.e., across levels and experimental conditions). Experimental conditions
are as given in Table 1.

relate to political ideology. For the variates associated with the
Anchoring phenomenon, this covariation is of course driven by
the Anchoring factor loading estimates.

As noted above, the e"ects of interest in the MLP were the
simple e"ect for each dependent measure. Thus, we now discuss
the estimates of the variation and covariation in e"ects at the
lab and subject levels (i.e., CTβCT and CTγ CT, respectively,
where C is the contrast matrix corresponding to the e"ects). The
estimates of the variation (i.e., the square roots of the diagonal
elements of CTβCT and CTγ CT), which we present in the right
panel of Figure 8, are medium to high ranging from 0.09 to 0.79
σd across the 15 e"ects with a median of 0.18 σd at the lab level
and low to high ranging from 0.05 to 1.49 σd across the 15 e"ects
with a median of 0.16 σd at the subject level. The estimates of
the covariation (i.e., the o"-diagonal elements of CTβCT and
CTγ CT) are for the most part relatively low across the pairs of

e"ects at each level, except among the four e"ects associated
with the Anchoring phenomenon for which the estimates were
high at each level.

3.3.2. Political Ideology Results
As noted above in our discussions of Figures 6 and 7, many of
the factor loading estimates at the lab and subject levels that
were most prominent were for variates associated with depen-
dent measures that relate to political ideology. For example, at
the lab level, the dependent measure factor loading estimates
were most prominent for the dependent measures associated
with the Currency Priming, Norm of Reciprocity, and Flag
Priming phenomena. The dependent measure associated with
the Currency Priming phenomenon is the eight item system
justi!cation scale which “measur[es] perceptions of the fairness,
legitimacy, and justi!ability of the prevailing social system” (Kay
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and Jost 2003); the dependent measure associated with Norm of
Reciprocity phenomenon relates to freedom of the press; and the
dependent measure associated with Flag Priming phenomenon
is an eight item questionnaire assessing views toward various
political issues (e.g., abortion, gun control, a$rmative action).

Further, even several variates with factor loading estimates
that were not prominent for any factor at any level also are
associated with dependent measures that relate to political ide-
ology, for example, the dependent measures associated with the
Quote Attribution and Allowed versus Forbidden phenomena.
The dependent measure associated with the Quote Attribution
phenomenon assesses agreement with the quotation “I have
sworn to only live free. Even if I !nd bitter the taste of death,
I don’t want to die humiliated or deceived” of Osama bin Laden
when it is attributed to bin Laden (disliked source) or George
Washington (liked source), and the dependent measure associ-
ated with the Allowed versus Forbidden phenomenon relates to
freedom of speech.

Conveniently in light of this, political ideology was assessed
in the MLP, speci!cally via a single item assessed on an integer
scale ranging from one (strongly liberal) to seven (strongly
conservative) as part of a six item demographic survey admin-
istered at the end of the MLP. The facts that (a) many of the
factor loading estimates at the lab and subject levels that were
most prominent were for variates associated with dependent
measures that relate to political ideology and (b) several variates
with factor loading estimates that were not prominent for any
factor at any level also are associated with dependent measures
that relate to political ideology suggest expanding the model to
include political ideology.

We do so by replacing αv in Equation (3) with αv,0 + αv,1xi
where xi is the political ideology of subject i. This allows political
ideology to associate not only with the variates but also the
e"ects (i.e., because the e"ects in the MLP were the simple e"ect
αv − αv′ for each dependent measure where v and v′ are the
two variates associated with the dependent measure, it allows
political ideology to associate with the e"ects via (αv,0 −αv′,0)+
(αv,1 − αv′,1)xi).

We now discuss the estimates of the association of polit-
ical ideology with the variates and e"ects, which we present
in Figure 9. We note that because of the presentation in σd
units, the estimates are not meaningful in an absolute sense;
however, they are meaningful in a relative sense, for example,
by comparing the values for the two variates associated with a
given dependent measure at a given level of political ideology.
Broadly speaking, political ideology associates with many of
the variates—sometimes more strongly than the experimental
manipulation and sometimes interacting with (i.e., moderating)
it. For example, the association of political ideology and the vari-
ates associated with the Currency Priming, Imagine Contact,
and Flag Priming phenomena dwarfs that of the experimental
manipulation. The association of political ideology and the
variates associated with the Sex Di"erences in Implicit Math
Attitudes, Sunk Costs, and Allowed versus Forbidden phenom-
ena is comparable to that of the experimental manipulation.
Further, political ideology appears to associate not only with
the Quote Attribution variates but also with the Quote Attribu-
tion e"ect (i.e., political ideology appears to interact with (i.e.,
moderate) the Quote Attribution experimental manipulation).

Finally, political ideology appears to have very little association
with the variates associated with the Gain versus Loss Framing
and Anchoring phenomena.

We note that expanding the model to include political ideol-
ogy also alters the estimates of the variation and covariation in
variates and e"ects. Speci!cally, the analogue of the estimates
of the factor loadings at the lab level remain similar to those
presented in Figure 6; this is unsurprising because political
ideology is assessed at the subject level rather than the lab level.
However, the analogue of the estimates of the factor loadings
at the subject level change substantially from those presented
in Figure 7; most notably, the intercept factor loading estimate
decreases from 0.24 to 0.19 σd and the Flag Priming dependent
measure factor loading estimate decreases from 0.82 to 0.03 σd.
Finally, the analogue of the estimates of the variation in variates
and e"ects at the lab and subject levels remain similar to those
presented in Figure 8 with one major exception: the estimates
of the variation in the variates associated with the Flag Priming
phenomenon decrease from 0.53 and 0.53 to 0.34 and 0.30 σd,
respectively, at the lab level and from 1.07 and 1.11 to 0.52 and
0.57 σd, respectively, at the subject level.

3.3.3. Anchoring Results
As noted above in our discussion of Figure 8, the estimates of
the variation and covariation in the eight variates and the four
e"ects associated with the Anchoring phenomenon were high
at both the lab and subject levels, and this arose in large part
from the estimates of the Anchoring factor loadings presented
in Figures 6 and 7. Further, as noted above, the Anchoring
phenomenon is unique among the phenomena investigated by
the MLP because it is the only one with repeated measures.
However, it is also unique for another reason: it is the only
phenomenon for which there is a correct response (e.g., the
height of Mount Everest is 29,029 feet) and thus for which the
experimental manipulation should be entirely ine"ective for
subjects who know this correct response. Both of these facts
likely contributed to the magnitude of the estimates presented
in Figures 6–8.

The magnitude of these estimates prompted us to closely
examine the study materials and data pertaining to the Anchor-
ing phenomenon which in turn suggested three insights that
relate back to the magnitude of these estimates. First, for three of
the four dependent measures (all but that regarding the distance
from San Francisco to New York City), the numeric value given
in the low anchor condition was much farther from the correct
response than that given in the high anchor condition. This is
re&ected in the fact that the estimates of the variation in the
variates associated with the low anchor condition and these
three dependent measures at the lab and subject levels presented
in Figure 8 far exceed those associated with the high anchor
condition.

Second, and unsurprisingly, there are individual di"erences
in knowledge (i.e., some subjects know the correct response for
one or more of the dependent measures while others do not).
This is re&ected in the magnitude of the Anchoring intercept
and Anchoring variate factor loading estimates presented in
Figure 7 and of the estimates of the variation in variates and
e"ects at the subject level presented in in Figure 8.
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Figure 9. MLP political ideology estimates. Posterior median estimates are given by the solid lines; 95% equal-tailed posterior interval estimates are given by the dashed
lines. Phenomena are sorted as discussed in the caption to Figure 8. Experimental conditions are as given in Table 1.

Third, and perhaps surprisingly, there are lab di"erences in
knowledge, especially for the dependent measure regarding the
height of Mount Everest. This is re&ected in the magnitude of
the Anchoring intercept and Anchoring variate factor loading
estimates presented in Figure 6 and of the estimates of the
variation in variates and e"ects at the lab level presented in
Figure 8, especially those for the dependent measure regarding
the height of Mount Everest.

3.3.4. Evaluation of Replicability
The estimates of the variation in variates and e"ects at the lab
level presented in Figure 8 provide a multi-study, continuous,

multi-faceted evaluation of replicability that indicates a medium
to low degree of replicability depending on the variate or e"ect.
Speci!cally, the estimates of the variation in variates at the lab
level are medium to high ranging from, as noted above, 0.11
to 0.69 σd across the 30 variates with a median of 0.24 σd.
Additionally, the estimates of the variation in e"ects at the lab
level are medium to high ranging from, as noted above, 0.09 to
0.79 σd across the 15 e"ects with a median of 0.18 σd.

To further evaluate the variation in the estimates of variates
and e"ects across labs, we examine the atypicality of the esti-
mates from each lab. We estimate this atypicality by computing
the root mean square error of the lab level estimates of the
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Figure 10. MLP lab atypicality estimates. Posterior median estimates are given by the points; 50% and 95% equal-tailed posterior interval estimates are given by the thick
and thin lines, respectively. Labs are sorted by the posterior median estimate of the variate atypicality.

variates (i.e., the βl,v) and the e"ects (i.e., contrasts of the βl,v),
which we present in Figure 10. The estimates suggest that no
lab is atypical in terms variates but that badania.net, Charles
University, and the University of Padua are somewhat atypical
in terms of e"ects; these three labs are also among the four most
atypical in terms of the estimates of variates.

4. Discussion

4.1. Evaluations of Replicability

In large-scale replication projects, replication has typically been
evaluated based on a single study and dichotomously. In this
article, we have used two characteristics shared by many large-
scale replication projects—namely, their multilevel and multi-

variate natures—to provide evaluations of replicability that are
based on multiple studies, continuous, and multi-faceted.

A heretofore unmentioned di"erence between the two
approaches to evaluating replicability is that the former is
external in the sense that it compares the estimates from a large-
scale replication project to those from some original study4

while the latter is internal in the sense that it compares the
estimates across the labs involved in a project. Consequently,
the two need not be concordant. For example, from an external
perspective, the Att-SNARC RRR “conclude[d] that we failed to

4In large-replication projects that are multilevel in nature such as RRRs and
MLPs, the estimates from the large-scale replication project used for com-
parison to date have typically been single meta-analytic average estimates,
and therefore the replication could be considered to be evaluated based on
a single study.
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replicate the e"ect reported by Fischer et al. (2003)” because
“the e"ects we observed both within and across labs were
minuscule and incompatible with those observed by Fischer
et al. (2003).” However, from an internal perspective, the Att-
SNARC RRR “successfully replicated” in the sense that estimates
of the variates and e"ects varied very little across the labs
involved in the project. Further, from an external perspective,
the MLP concluded that they “successfully replicated 11 of 13”
e"ects because the e"ects they observed attained “statistical
signi!cance” and were directionally consistent with those
observed in the original studies of the phenomena. However,
from an internal perspective, the MLP “failed to replicate”
depending on the variate or e"ect in the sense that estimates of
many variates and e"ects varied much across the labs involved in
the project.

The external and internal approaches are of course not mutu-
ally exclusive, but the latter has heretofore been overlooked and
has several advantages. First, estimates from original studies
in many domains are typically quite imprecise; consequently,
any comparison of the estimates from a large-scale replication
project to those from an original study as per the external
approach will also be quite imprecise even if the former esti-
mates are precise. Second, unlike the external approach, the
internal approach not only is based on multiple studies, is con-
tinuous, and is multi-faceted, but also follows directly from
model parameters. Third, internal replicability would seem to
be a necessary (though not su$cient) condition for external
replicability because insofar as estimates vary across the labs
involved in a project, they are likely to vary even more across
labs that are not involved in the project.

If the estimates of the variation in variates and e"ects across
the labs involved in a large-scale replication project are su$-
ciently low for certain variates and e"ects, that indicates those
variates and e"ects are replicable. However, even if the estimates
are not low, variates and e"ects can be considered replicable
provided the variation is predictable. In particular, if there is
some known covariate or set of covariates—ideally causal ones
but also correlates—that can reliably predict that certain variates
or e"ects from some labs will be larger while those from other
labs will be smaller, then the variate or e"ect is replicable.

Estimating the covariation in variates and e"ects is thus
important for evaluating replicability because it can suggest such
covariates. In particular, a high degree of covariation in variates
and e"ects suggests that a common covariate or set of covariates
is causing or is associated with the variation in the variates or
e"ects and facilitates the identi!cation of such covariates when
unknown, as illustrated by ocular dominance in the Att-SNARC
RRR and political ideology in the MLP.

We note that such covariates are of two types, namely theo-
retically pertinent ones and method factors (i.e., anything per-
taining to the implementation of the study that is not directly
related to the theory under investigation; McShane et al. 2019).
Regardless of type, these covariates should be accounted for
in the study design and analysis so as to reduce variation and
thus increase replicability. Theoretically pertinent covariates
should also be incorporated into theory so as to enhance it.
Further, whether a given covariate should be deemed theoret-
ically pertinent or not will depend on the perspective of the
researcher.

Finally, we have focused on replicability as evaluated by the
variation in variates and e"ects at the lab level. Two aspects of
this evaluation are noteworthy. First, evaluations of replicability
to date have focused solely on e"ects and given no consideration
to variates. However, it is necessary to consider both to have
a truly multi-faceted evaluation of replicability. Further, one
should expect e"ects considered solely on their own to pro-
vide an overly-optimistic evaluation of replicability; speci!cally,
one should expect the variation and covariation in variates to
be higher than that in e"ects due to the zero-sum nature of
contrasts.

Second, we have focused the evaluation of replicability on the
lab level because theories in psychological research are typically
at the aggregate rather than individual level. In other domains
where theories may be at the individual level, the variation in
variates and e"ects at the subject level in addition to or in lieu
of that at the lab level may be more germane to evaluating
replicability.

4.2. Recommendations for Future Large-Scale Replication
Projects

We have four recommendations for future large-scale replica-
tion projects. First, we recommend that large-scale replication
projects analyze the data via an approach that provides all eight
quanti!cations relevant for evaluating replicability, namely that
of the variation and covariation in variates and e"ects at the lab
and subject levels. Our modeling framework will prove useful
for this purpose, and we discuss in the next subsection several
possible model extensions that are motivated by designs typical
in psychological research that our framework can accommo-
date.

Second, we recommend that large-scale replication projects
employ repeated measures for all phenomena under investiga-
tion in the project (as was done for the single phenomenon in
the Att-SNARC RRR and the Anchoring phenomenon in the
MLP) rather than a single measure (as was done for all phe-
nomena other than the Anchoring phenomenon in the MLP).
This has several important bene!ts. Repeated measures of a
phenomenon allow for a better accounting of lab and individual
di"erences with respect to the phenomenon. This yields not
only more substantive estimates of variation and covariation but
also information directly relevant for evaluating replicability.
For instance, as illustrated in the MLP, the repeated measures of
the Anchoring phenomenon suggested lab and individual dif-
ferences in knowledge (i.e., of the distance from San Francisco
to New York City, the number of babies born per day in the
United States, etc.); this in turn suggested that the Anchoring
theory may or may not apply to various dependent measures
associated with (i.e., operationalizations of) it depending on the
lab or subject—something that seemed especially relevant for
the dependent measure regarding the height of Mount Everest.
Repeated measures also allow for an evaluation of measurement
invariance which is a necessary precondition for an evaluation
of replicability (see, e.g., Fabrigar and Wegener 2016).

Third, we recommend that large-scale replication projects
focus on a single phenomenon as in the Att-SNARC RRR rather
than many phenomena as in the MLP. This will increase covaria-
tion in variates and e"ects and thus the likelihood of identifying
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unknown covariates, whether theoretically pertinent ones or
method factors.

At minimum, large-scale replication projects that investigate
many phenomena should give careful consideration to theoret-
ical relationships among the phenomena that they investigate
when choosing the phenomena. Consideration to date has been
given solely to pragmatic concerns. For example, in the MLP,
the phenomena were chosen based on suitability for online
presentation, length of study, simplicity of design, and diversity.
Regarding diversity, our results suggest that the phenomena
investigated by the MLP are not in fact so diverse; speci!cally,
the dependent measures associated with many of these phe-
nomena relate to political ideology. Thus, insofar as diversity
of phenomena is of interest, diversity with respect to both the
dependent measures and the experimental conditions associ-
ated with the phenomena is necessary.

Fourth, we recommend that large-scale replication projects
vary the study materials within and across the labs involved in
the projects rather than use the same materials (as was done in
the Att-SNARC RRR and the MLP). This allows for an evalua-
tion of the robustness of replicability, speci!cally by examining
the degree to which the estimates of variation in variates and
e"ects increases as the study materials vary (Baribault et al. 2018;
McShane et al. 2019; DeKay et al. 2022).

4.3. Design-Based Model Generalization

To quantify the variation and covariation in variates and e"ects
at the lab and subject levels, we introduced a multilevel mul-
tivariate modeling framework for analyzing all of the subject
level data from large-scale replication projects jointly in a single
analysis. Our framework employs a factor analytic structure for
the variance-covariance matrices at the lab and subject levels
that is specially tailored to the design of large-scale replica-
tion projects. Speci!cally, the factor analytic structure is con-
strained based on the design of these projects. This results
in three distinct advantages: interpretability, adaptability, and
parsimony.

Our design-based constraints stand in stark contrast to the
unconstrained (or “exploratory”) factor analytic structures typ-
ical in psychological research as well as the constrained (or
“con!rmatory”) factor analytic structures also typical in psycho-
logical research in which the constraints are based on theoretical
relationships among the variates assessed. For example, the esti-
mates of the factor loadings in the Att-SNARC RRR presented
in Figures 1 and 2 are not unconstrained (i.e., there are not 16
variates × 3 factors = 48 freely varying loadings in each !gure).
Neither are they constrained based on theoretical relationships
among the 16 variates. Instead, they are constrained based on
the design of the Att-SNARC RRR, namely that it investigated a
single phenomenon and featured four dependent measures and
four experimental conditions, with all four dependent measures
assessed for each experimental condition. These design-based
constraints respect the fact that variates subsist in dependent
measures which subsist in the phenomenon as a whole.

The model speci!cation employed in the Att-SNARC RRR
represents a “minimal” speci!cation that is highly adaptable
to variations in the design, as illustrated by the model exten-
sions employed in the MLP. Indeed, our modeling framework

is su$ciently general to accommodate an arbitrary number
of phenomena, dependent measures, experimental conditions,
levels, and covariates at any level. We therefore note several other
possible model extensions that are motivated by designs typical
in psychological research that our framework can accommodate
and that will prove useful for the analysis of the data from past
and future large-scale replication projects.

If our recommendation to employ repeated measures for
all phenomena under investigation in a large-scale replication
project is heeded, the basic three-factor structure employed
in the Att-SNARC RRR can be extended to introduce a phe-
nomenon factor as well as intercept, dependent measure, and
variate factors for each phenomenon. In this case, the design-
based constraints respect the fact that variates subsist in depen-
dent measures which subsist in the particular phenomena under
investigation which subsist in psychological phenomena as a
whole.

In addition, if the experimental conditions are the same
across the dependent measures (e.g., as is the case when there
are repeated measures of the same phenomenon), the intercept
factor can be extended so that the loadings can vary across the
variates associated with each experimental condition, as illus-
trated at the lab level in the MLP. Further, if these experimental
conditions follow a factorial design, factors corresponding to
this design can instead be introduced.

Moreover, in observational research with no experimental
conditions, the variate factor can simply be omitted. Alterna-
tively, if subgroups of subjects such as demographic groups are
of interest, those can play the role of the experimental conditions
in de!ning variates.

To accommodate levels in addition to the lab level and the
subject level (e.g., to treat labs as grouped by continent), a
random e"ect for each additional level unit (e.g., continent) and
variate can be introduced. Further, one can assume the vector
of random e"ects for each additional level unit are independent
and identically distributed according to the multivariate normal
distribution with mean zero and variance-covariance matrix
modeled in the same manner as at the lab level.

To accommodate covariates at any level, the various model
parameters can be allowed to vary as a function of them. The
choice of which parameter(s) vary and how they vary can be
based on theory or results, as illustrated in the Att-SNARC RRR
and the MLP.

Finally, to accommodate settings in which the subject level
data is not available but lab level data is (speci!cally, an estimate
of the mean of each variate from each lab, an estimate of the
variance-covariance matrix of the variates from each lab, and
the sample size from each lab), the model requires only minor
modi!cation.

Supplementary Materials

The Supplementary Materials contain data and code to reproduce all results
(i.e., Figures 1–10) in the article.
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