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We heartily thank editor Heping Zhang for according our
article (McShane, Bockenholt, and Hansen 2022) discussion. We
are extremely grateful for the opportunity to receive comments
on our work from a set of distinguished discussants who possess
a tremendous breadth and depth of knowledge and expertise,
and we thank them profoundly for the great deal of time and
effort they put into contemplating and responding to our article.

We were delighted that De Boeck, DeKay, and Xu (2022;
hereafter DDX) appreciated our contributions, namely (i) our
proposal to quantify the variation and covariation in variates
and effects at all levels and (ii) our multilevel multivariate mod-
eling framework for doing so. We were gratified that they rec-
ognized that our proposal addresses not only replicability but
also generalizability and integrability; found that our modeling
framework was easily adapted to and proved useful for their
reanalysis of the data from the second metastudy of DeKay et al.
(2022); and discussed how our framework would prove useful
for the analysis of the data from potential future integrative
metastudies.

Inspired by the discussion, we make five comments regarding
modeling and learning from variation and covariation.

1. Simple Modeling of Variation and Covariation

As we discussed in our article, the typical approach to the
analysis of the data from large-scale replication projects either
foregoes quantifying the variation and covariation in variates
and effects at the lab and subject levels or quantifies the variation
in effects at the lab level and foregoes quantifying all other
variation and covariation. What we did not discuss is that even
highly simple and accessible models yield results that indicate
substantial variation and covariation in our applications which
in turn calls for more sophisticated modeling.

For example, consider the hierarchical (or multilevel) lin-
ear model with lab and subject terms—the most basic model
possible that quantifies variation and covariation at the lab and
subject levels. The model specification for this baseline model is
given by

Yiy = oy + Byl + Vi + iy

where y;, denotes the observation for subject i and variate v;
I[i] denotes the lab I at which subject i was observed; the «,

are treated as fixed effects for each variate; the §; are treated as
random effects for each lab; the y; are treated as random effects
for each subject; and the ¢;,, are random errors for each subject
and variate. The model assumes that the §; are independent
and identically distributed according to the normal distribution
with mean zero and variance 72; the y; are independent and
identically distributed according to the normal distribution with
mean zero and variance r)%; the ¢;, are independent and dis-
tributed according to the normal distribution with mean zero
and variance aj[v] where d[v] denotes the dependent measure
associated with variate v; and there is zero covariation among
the B, yi, and g, for all [, i, j, and .

This model can be viewed as the special case of our model
that constrains the 8;, to be equal to g for all v and the y;,
to be equal to y; for all v (or equivalently, Tg to be equal to
72117 and T, to be equal to r]% 11T where 1 is the vector of ones
of length equal to the number of variates). As such, it assumes
equal variation and perfect covariation in variates at each level
and zero variation and zero covariation in effects at each level.

In the Att-SNARC RRR, the estimates of the variation in
variates at the lab and subject levels from this model (i.e., 7g and
T,, respectively), which we present in the left panel of Figure 1,
are 15 ms at the lab level and 44 ms at the subject level. These
estimates are remarkably similar to those presented in the left
panel of Figure 3 of our article to which these can be directly
compared.

In the MLP, the estimates of the variation in variates at the
lab and subject levels from the analogue of this model (i.e., g
and 1, respectively), which we present in the upper left panel
of Figure 2, are 0.11 o at the lab level and 0.17 o4 at the subject
level. These estimates are smaller than those presented in the left
panel of Figure 8 of our article to which these can be compared,
but they are nonetheless substantial.

Further, when this model is extended to accommodate the
repeated measures of the experimental conditions associated
with the Anchoring phenomenon by introducing additional
terms for them, the estimates of the variation in variates at the
lab and subject levels, which we present in the lower left panel
of Figure 2, are 0.15 ¢ for the variates not associated with the
Anchoring phenomenon, 0.09 o, for the variates associated with
the high anchor condition, and 0.29 o, for the variates associ-
ated with the low anchor condition at the lab level and 0.22 o4
for the variates not associated with the Anchoring phenomenon,
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Figure 1. Att-SNARC RRR variation estimates from the baseline model. Posterior
median estimates are given by the points; 50% and 95% equal-tailed posterior
interval estimates are given by the thick and thin lines, respectively. The baseline
model assumes equal variation in the 16 variates at each level and zero variation in
the four effects at each level.
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Figure 2. MLP variation estimates from the baseline and extended models. Poste-
rior median estimates are given by the points; 50% and 95% equal-tailed posterior
interval estimates are given by the thick and thin lines, respectively. The baseline
model assumes equal variation in the 30 variates at each level and zero variation
in the 15 effects at each level. The extended model assumes equal variation in the
22 variates not associated with the Anchoring phenomenon, equal variation in the
four variates associated with the high anchor condition, and equal variation in the
four variates associated with the low anchor condition at each level; it also assumes
zero variation in the 11 effects not associated with the Anchoring phenomenon and
equal variation in the four effects associated with the Anchoring phenomenon at
each level.

0.39 o4 for the variates associated with the high anchor condi-
tion, and 0.71 o for the variates associated with the low anchor
condition at the subject level. In addition, the estimates of the
variation in the effects associated with Anchoring phenomenon
at the lab and subject levels from this extended model, which we
present in the lower right panel of the figure, are 0.33 o, at the
lab level and 1.01 o at the subject level.

In sum, even highly simple and accessible models yield
results that indicate substantial variation and covariation in

our applications which in turn calls for more sophisticated
modeling (of course, their not having yielded results that
indicate substantial variation and covariation would not
have implied that more sophisticated models would also not
have yielded results that indicate substantial variation and
covarijation and therefore it is necessary to consider such more
sophisticated models— particularly to support claims of a lack
of substantial variation and covariation).

2. Modeling Variation and Covariation in Effects

The models discussed above are obviously overly simplistic
for modeling variation and covariation. Arguably, however, so
too are the particular model specifications employed in our
applications—especially for modeling variation and covariation
in effects. For example, consider the three-factor structure
employed to model Tg and T), in the Att-SNARC RRR. Because
the observations y;, are of variates and because the effects
of interest are contrasts of a particular dependent measure as
assessed across multiple experimental conditions, this three-
factor structure implies a single-factor structure for effects,
which is of course a highly—and arguably overly—constrained
factor structure.

Yet, perhaps it is not overly constrained. As we discussed in
our article, we expect the variation and covariation in variates
to be higher than that in effects due to the zero-sum nature of
contrasts. Further, it is arguably not implausible that the covari-
ation in the variates associated with one dependent measure
and those associated with another dependent measure would be
similar (or even the same) across the experimental conditions
associated with each of the dependent measures; this would in
turn imply low (or zero) covariation in the effects associated
with the dependent measures. Indeed, insofar as the covariation
in variates is caused by or associated with some covariate or
set of covariates and the covariate(s) have an effect on the
variates associated with each dependent measure that is the
same across the experimental conditions associated with the
dependent measure—as is typically assumed in psychological
research, for example, by ANCOVA models—that covariation
in variates would be the same and thus the covariation in effects
would be zero.

3. Modeling Variation and Covariation in Metastudies

DDX found that our modeling framework was easily adapted
to and proved useful for their reanalysis of the data from the
second metastudy of DeKay et al. (2022), which investigated
a single phenomenon and involved a single lab. We discuss
model extensions to accommodate metastudies that investigate
multiple phenomena and involve multiple labs.

First, when a metastudy involves multiple labs, one approach
is to simply view the lab as what DDX label a secondary design
factor. In this case, the levels would be the microstudy and
subject levels and our modeling framework could be applied
with only minor modification (e.g., the microstudy level playing
the role of the lab level). Then, the estimates could be examined
ex post as a function of the secondary design factors as illustrated
in Figure 1 of DDX’s comment.



Alternatively, one can view the levels as the lab and subject
levels and incorporate the secondary design factors into the
factor structure. One manner of doing so at the lab level is
to recognize that a metastudy is simply a study that follows
a factorial design, albeit one with a larger number of factors
than is typical, and to recall that when studies follow a factorial
design, factors corresponding to this design can be introduced
as we discussed in our article. Other possibilities include view-
ing the levels as the lab, microstudy, and subject levels, with
either microstudies nested within labs or labs and microstudies
crossed.

Second, when a metastudy investigates multiple phenomena,
several of the model extensions we discussed in our article
should prove useful. In particular, when a metastudy investi-
gates multiple related phenomena and employs repeated mea-
sures for all phenomena under investigation (as do the inte-
grative metastudies discussed by DDX), extending the factor
structure to introduce a phenomenon factor as well as intercept,
dependent measure, and variate factors for each phenomenon
should prove particularly useful.

4. Learning from Variation and Covariation in Our
Applications

DDX note that replicability, generalizability, and integrability
are three important aspects of research and that our proposal
to quantify the variation and covariation in variates and effects
at all levels addresses all three. We discuss how it does so in our
applications, noting that variation pertains more to replicability
and generalizability and that covariation pertains more to inte-
grability.

Replicability was covered in our article. Indeed, it was the
focus of our article to the want of other considerations. This
focus was inevitable due to design choices, specifically the choice
of the Att-SNARC RRR and the MLP to—like all RRRs and
MLPs conducted to date—use the same study materials within
and across the labs involved in the projects. This choice severely
constrains the degree of variation in variates and effects in these
projects. Consequently, it is perhaps rather remarkable that our
results indicated medium to high variation in variates and effects
across labs in the MLP and thus a medium to low degree of
replicability depending on the variate or effect.

In terms of generalizability, DDX comment that “[t]he kind
of generalization that is of interest in such studies [as the Att-
SNARC RRR and the MLP] is generalization across labs and
their participant populations, using the exact same design and
experimental materials in each lab” We are less sanguine that
our results regarding the variation across labs in these projects
can address such generalizability again due to design choices,
namely the fact that the labs involved in these projects are a
convenience sample of labs.

In terms of integrability, because the Att-SNARC RRR—Ilike
RRRs in general—investigated only a single phenomenon, it
can address integrability to only a limited degree (i.e., across
the four dependent measures associated with the phenomenon).
However, because the MLP investigated multiple phenomena,
it can address integrability to a greater degree yet again sub-
ject to design choices. Our results indicated covariation related
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to political ideology which suggested expanding the model to
include political ideology which in turn suggested that political
ideology associates with many of the variates.

Whether this reflects something fundamental or is an artifact
of design choices remains to be seen. On one hand, politi-
cal ideology is known to cause or associate with a host of
psychological constructs (see, e.g., Jost et al. 2003). On the other
hand, many of the dependent measures associated with the
phenomena investigated by the MLP relate to political ideology,
but for many of these phenomena, a dependent measure related
to political ideology seems neither intrinsic to nor necessary for
the phenomenon. For example, the dependent measure associ-
ated with the Allowed versus Forbidden phenomenon relates to
freedom of speech, but the phenomenon could be investigated
using alternative dependent measures, and in particular ones
not so obviously related to political ideology. Insofar as covaria-
tion related to political ideology remains when such alternative
dependent measures are used, this would suggest our results
reflect something fundamental and are not an artifact of design
choices. This seems worthy of examination in future research.

5. Learning from Variation and Covariation in Future
Projects

In large-scale replication projects, replication has typically been
evaluated based on a single replication study of some origi-
nal study and dichotomously as successful or failed. Further,
this dichotomization has typically been made based on criteria
rooted in the null hypothesis significance testing paradigm.
Finally, the replication study has typically been designed to
reproduce the original study as closely as possible.

In addition, even large-scale replication projects such as
RRRs and MLPs that have conducted multiple replication
studies of some original study (i.e., one at each lab involved in
the project) have typically evaluated replication dichotomously,
based on criteria rooted in significance testing, and in a manner
that could be considered to be based on a single study. Moreover,
they have used the same study materials within and across the
labs involved in the projects and these materials have typically
been designed to reproduce the original study as closely as
possible.

This state of affairs is perhaps curious as Rosenthal (1990),
drawing on his work dating from the 1960s, already dismissed
evaluations of replicability that are dichotomous and rooted in
significance testing as “[t]he traditional, not very useful view
of replication” and advocated evaluations of replicability that
are continuous and rooted in effect sizes as “[t]he newer, more
useful view of replication” He also dismissed evaluations of
replicability that are based on a single study as inadequate and
advocated evaluations of replicability that are based on multiple
studies. He further advocated that these multiple studies “vary
in [their] degree of similarity to the original study” to allow the
studies to address generalizability.

Expanding on Rosenthal, we made four recommendations
for future large-scale replication projects in our article, namely
that they (i) quantify the variation and covariation in variates
and effects at all levels, (ii) employ repeated measures for all phe-
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nomena under investigation, (iii) focus on a single phenomenon
or a set of related phenomena, and (iv) vary the study materials
within and across the labs involved in the projects. The fourth
recommendation allows the project to address generalizability
across differing implementations of the study, and we view the
metastudy methodology discussed by DDX as an appealing
means of adhering to this recommendation; indeed, DeKay et al.
(2022) has already demonstrated the value of the metastudy
methodology for the Gain versus Loss Framing phenomenon
investigated by the MLP. Further, the second and third rec-
ommendations allow the project to address integrability across
the various dependent measures associated with (i.e., opera-
tionalizations of) a phenomenon and the phenomena under
investigation, respectively. Combined with the first recommen-
dation, whether adhered to using our modeling framework or
otherwise, projects designed and analyzed in accordance with
these recommendations will be capable of providing not only
evaluations of replicability that are based on multiple studies,
continuous, and multi-faceted but also addressing generalizabil-
ity across differing implementations of the study and integra-
bility of the dependent measures and the phenomena under
investigation.
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