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Abstract

We comment on Iacobucci, Posavac, Kardes, Schneider, and Popovich (2015) by evaluating the practice of discretizing continuous variables.
We show that dichotomizing a continuous variable via the median split procedure or otherwise and analyzing the resulting data via ANOVA
involves a large number of costs that can be avoided by preserving the continuous nature of the variable and analyzing the data via linear
regression. As a consequence, we recommend that regression remain the normative procedure both when the statistical assumptions explored by
Iacobucci et al. hold and more generally in research involving continuous variables. We also discuss the advantages of preserving the continuous
nature of the variable for graphical presentation and provide practical suggestions for such presentations.
© 2015 Society for Consumer Psychology. Published by Elsevier Inc. All rights reserved.
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Introduction

Iacobucci, Posavac, Kardes, Schneider, and Popovich
(IPKSP) have brought the general issue of the discretization (or
categorization) of continuous variables—and the specific issue of
discretization via the median split procedure—to the forefront of
consumer psychology. We appreciate their call for “a more
nuanced understanding of the statistical properties of a median
split.” It is useful and constructive to discuss best practices in
research, and we thank the editors of the Journal of Consumer
Psychology for allowing us to offer our own perspective and
contribution.

In this commentary, we provide a “researcher's guide” to
regression, discretization, and median splits of continuous
variables. Our commentary is targeted at both those who are
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unfamiliar with the core issues involved in discretization as
well as those who wish to better understand them. To preview
the perspective proffered in this commentary, it is helpful to
recall the following statement from IPKSP:

Although median splits may be perceived as suboptimal
from the perspective of power, if there was no possibility
that they could produce misleading support for apparent
relations between variables that, in truth, are spurious, their
use would not be a problem. However, if median splits can
produce Type I errors (the false conclusion of an effect),
their use would be inappropriate.

In contrast to IPKSP's near exclusive focus on Type I error, we
propose a more holistic and integrative view of the costs and
perceived benefits associated with discretization. In particular,
we believe that Type II error is of considerable importance and
suggest that the relative cost of Type I versus Type II error (which
varies by research setting) should be given due consideration.
Consequently, we emphasize the use of efficient statistical
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procedures in order to increase statistical power (i.e., decrease
Type II error) while keeping Type I error fixed at α, the size of the
test (i.e., the maximum probability of a Type I error or the
minimum significance level; typically α = 0.05). We also discuss
additional costs of discretization such as the loss of individual-
level variation, reduced predictive performance, and inefficient
effect size estimates.

In the remainder of this commentary, we provide an in depth
treatment of issues pertaining to the discretization of a
continuous variable under the statistical assumptions explored
by IPKSP. We explore the issues associated with various
statistical approaches to continuous variables and discretization
and show that preserving the continuous nature of the variable
and analyzing the data via linear regression both is more
informative and has greater power. As noted, the rationale for
this perspective is based on more general considerations
beyond the Type I error issues explored by IPKSP. We aim to
make it transparent that discretization is associated with a large
number of costs. Thus, we recommend that regression remain
the normative procedure both when the statistical assumptions
explored by IPKSP hold and more generally in research involving
continuous variables.We also discuss the advantages of preserving
the continuous nature of the variable for graphical presentation.
Finally, we comment briefly on several additional considerations
and provide a brief summation.

Analysis strategies in the default case

Statistical assumptions

IPKSP rightly note that it is quite common for a “researcher
to manipulate one (or more) factors and measure another
[continuous] variable (one but not more)” and thus we make
this case the focus of our commentary. We further assume that
the sample size per (manipulated) condition is not unreasonably
small because (i) one generally does not attempt to account for a
measured variable (whether by regression or other means) when
x0 x1
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Y

Fig. 1. Linear regression in the default case. The points indicate the raw data, the x-a
and the color indicates the treatment variable. The lines indicate a linear regression
one has very few subjects per condition and (ii) reasonable
sample sizes ensure the measured variable is independent of the
(generally randomized) treatment manipulation provided either
the measured variable is assessed prior to the manipulation or it is
assessed after the manipulation but is unaffected by it; this
assumption does not seem unreasonable as the field is moving in
the direction of larger sample sizes (Asendorpf et al., 2013;
Brandt et al., 2014; Cumming, 2014; McShane & Böckenholt,
2014, in press; Pashler & Wagenmakers, 2012).

We further assume that the linear model holds. That is, for
each manipulated condition, the continuous dependent variable
Y is a linear function of the measured variable X.

The assumptions stated thus far are entirely consistent with
those of IPKSP. We make the additional assumption that the
number of manipulated conditions is two and they are labeled
“Treatment” and “Control.” As such, the treatment status can be
represented by a binary treatment variable T that is zero for
subjects in the control condition and one for those in the treated
condition. We make this last assumption for illustration purposes
only and our comments hold for any natural number of conditions
(e.g., four in a 2 × 2 study design).

These assumptions define the “default case” for this commen-
tary and we explicitly note whenever we make comments that
depart from this case.
Linear regression

We illustrate linear regression in the default case in Fig. 1.
The data underlying the figure comes from a simulated two-
condition study with two hundred subjects per condition. The
points indicate the raw data, the x-axis indicates the measured
variable, the y-axis indicates the dependent variable, and the
color indicates the treatment variable. Finally, the lines indicate
a linear regression fit to the data; this can be fit by regressing
the dependent variable Y on the treatment variable T, the
measured variable X, and their product T ⋅ X.
Group

Control

Treatment

xis indicates the measured variable, the y-axis indicates the dependent variable,
fit to the data.

Image of Fig. 1
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The linear regression allows researchers to compare the
treatment and control groups at various levels of the measured
variable X. For instance, at X = x0 the treatment group scores
substantially higher than the control group on the dependent
variable Y while at X = x1 they score similarly. Regression also
allows researchers to obtain standard errors for the differences
between the two groups at a given level of X and conduct null
hypothesis significance tests of whether the differences are, for
example, statistically significantly different from zero.

Linear regression also allows researchers to compute
differences in differences, for example the difference between
(i) the difference between the treatment and control groups at
X = x1 and (ii) the difference between the treatment and control
groups at X = x0. This is of course the interaction and it allows
researchers to assess the magnitude of the difference in the
slopes of the two groups.

Additionally, linear regression allows researchers to compare
how the dependent variable Y changes as the measured variable X
changes for a given group (i.e., treatment or control). We
emphasize caution here because, in contrast to the comparisons
illustrated in the prior two paragraphs, this type of comparison is
merely associational and not causal (i.e., experimental). This is so
because the measured variable was measured rather than
manipulated. As a consequence, although it is correct to state
that an increase in the measured variable is associated with a
decrease (increase) in the dependent variable for the treatment
(control) group, it is not necessarily correct to state that this
change in the dependent variable was caused by the increase in
the measured variable. This limitation aside, this analysis is
informative as it allows researchers to make predictions about the
change in Y that is expected for a given change in X for each
group. For example, if X is an attitude measure assessed on an
11-point continuous scale and Y is a behavioral measure such as
purchase frequency, researchers can use the regression to make a
prediction about the purchase frequency of a given subject with
an attitude score of 6.5 and compare it to the prediction for
another subject with an attitude score of 9.5.

Finally, researchers can engage in comparisons of simple
effects via spotlight analysis (Aiken & West, 1991; Irwin &
McClelland, 2001) and floodlight analysis (Johnson & Neyman,
1936; Spiller, Fitzsimons, Lynch, & McClelland, 2013) and
comparisons of slopes via simple slopes analysis (Aiken &West,
1991). These techniques can be used to, among other things,
obtain predicted means for individuals at critical points (e.g., one
standard deviation below and above the mean of the measured
variable); the predicted means come directly from the regression
line and can be used for direct comparison.

Dichotomization and the median split procedure

Having discussed linear regression in the default case, we now
turn to dichotomization. Dichotomization involves splitting the
measured variable X at some fixed value to form two categories
that can be described as “Low” and “High.” One popular choice
for the split point is the sample median, and dichotomization at
the sample median is called a median split. Another choice for the
split point is the midpoint of the measurement scale of the
measured variable; in this case, we suggest calling the procedure
a midpoint split to distinguish it from a median split. Other split
points are also possible.

We refer to discrete groupings based on manipulated variables
as conditions or groups and those based on the discretization of
measured variables as categories. We introduce this terminology
in order to keep conceptually distinct (i) treatment conditions
based on manipulated variables and (ii) categories created from
measured variables. This terminology has the benefit of
emphasizing the distinction between causal comparisons (between
different levels of manipulated variables) and associational
comparisons (between different levels of measured variables).

Given a dichotomization via the median split procedure or
otherwise, we have four groupings: (Low, High) × (Treatment,
Control). The typical practice is to analyze these groupings via
ANOVA; indeed, following IPKSP we will assume that the
data will be analyzed via linear regression when and only when
the continuous nature of the variable is preserved and that it
will be analyzed via ANOVA when and only when the variable
is dichotomized.

Using the data plotted in Fig. 1, we illustrate the typical
presentation of a median split in Fig. 2. The median split allows
researchers to compare how Y varies across the treatment and
control groups given a fixed value of the new binary X variable.
For example, the treatment group scores higher on the dependent
variable than the control group in the low category while the
treatment group scores lower in the high category. The median
split also allows researchers to consider the interaction via a
difference in differences. Finally, the median split allows
researchers to compare how Y varies across the two categories
implied by the binary X given a fixed value of the treatment
variable; as above, we caution that this comparison is merely
associational and not causal. In sum, the median split procedure
appears to allow researchers to make comparisons that are
similar to those they would make by preserving the continuous
nature of the variable (e.g., simple comparisons, interactions). As
such, the primary difference between the two approaches appears
to be in the modeling choice (i.e., linear regression versus
ANOVA).

A much more complete and informative illustration of the
median split is provided in Fig. 3. The points indicate the raw
data, the x-axis indicates the measured variable, the y-axis
indicates the dependent variable, the color indicates the treatment
variable, and the lines indicate the fit implied by the median split
procedure. Although Fig. 3 provides the same fit as Fig. 2, it
makes clear that the median split procedure assumes that, for each
manipulated condition, the dependent variable Y is modeled as a
step function with a single step at the sample median of the
measured variable X and that the predicted value below (above)
the sample median is given by the sample mean of the dependent
variable Y among the points with measured variable X below
(above) the sample median. It also makes clear that this
yields a poor fit to the data in the default case of linearity. For
example, consider the control group data; for low and moderately
high (moderately low and high) values of the measured
variable, the fit implied by the median split procedure is too
high (low).
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Fig. 2. Median split in the default case. The bars indicate the mean of the dependent variable for each of the four groupings: (Low, High) × (Treatment, Control).
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Costs and perceived benefits of dichotomization

Costs

Loss of individual-level variation
Dichotomization into low and high categories via the median

split procedure or otherwise discards the potentially rich variation
in individual scores. For example, subjects with measured X just
above the median, moderately above the median, and substan-
tially above the median are all treated as identical by the median
split procedure as illustrated in Figs. 2 and 3 (i.e., they are all
classified in the high category). However, when the linear model
holds, treating these subjects identically is simply incorrect as the
raw data plotted in Figs. 1 and 3 show: subjects just above the
median are clearly not identical to subjects moderately or
substantially above the median in terms of the dependent variable
when the slope is nonzero. Consequently, the variation in the
X

Y

Fig. 3. Median split in the default case, scatterplot presentation. The points indicate
dependent variable, and the color indicates the treatment variable. The lines indicate
treatment effect from substantially positive to roughly zero to
substantially negative observed across the range of the measured
variable X in Fig. 1 is collapsed into a simple positive (negative)
effect in the low (high) category in Figs. 2 and 3. This is a cost
inherent to dichotomization whether via the median split
procedure or otherwise.

Reduced predictive performance
A cost of dichotomization related to the loss of individual-

level variation is diminished precision in the predictions
researchers can make as the measured variable X varies and the
concomitant reduction in the variance of the dependent variable
explained. A researcher using linear regression with a continuous
variable can make predictions about the dependent variable Y
along the continuum of the measured variable X. In contrast, a
researcher using dichotomization can make predictions only
about how the low and high categories differ ignoring distinctions
Group

Control

Treatment

the raw data, the x-axis indicates the measured variable, the y-axis indicates the
the fit implied by the median split procedure.

Image of Fig. 3
Image of Fig. 2


670 D.D. Rucker et al. / Journal of Consumer Psychology 25, 4 (2015) 666–678
based on the relative score within each category. Although these
less precise associational predictions may not be entirely useless,
they are clearly dominated by those provided by the regression.

To illustrate, assume that X is an attitude measure assessed
on an 11-point continuous scale, that the median in the sample
is 5.5, that Y is a behavioral measure such as purchase
frequency, and that a one unit increase in the attitude score X is
associated with a one-half unit increase in purchase frequency Y
for, say, the control group. Imagine comparing the predicted
purchase frequency for subjects in the control group given an
observed attitude score of 6.5 versus an observed attitude score
of 9.5. Regression makes it clear that we should expect the
purchase frequency to increase by one-and-a-half. In other words,
regression predicts differently for X = 6.5 than for X = 9.5. In
contrast, the median split considers these two subjects identical:
both are lumped into the high category. A prediction can still be
made but it will be the same for both values of X.

Increased Type I error
IPKSP note that the median split procedure can, in some

cases, increase Type I error focusing on two cases in particular:

1. Replicating prior research (MacCallum, Zhang, Preacher, &
Rucker, 2002; Maxwell & Delaney, 1993), they note that
when two continuous variables are both dichotomized, this
can create spurious effects particularly when the two variables
are collinear.

2. In their first simulation, they note that even when only a single
continuous variable is dichotomized, it can create spurious
effects in a second continuous variable (that is left continuous)
provided the two variables are collinear.

These facts are noteworthy and we concur with IPKSP about
the danger of the median split procedure in these settings. We
note that both of these cases fall outside the default case as they
require two continuous variables and collinearity.

IPKSP also provide a more nuanced understanding of the
potential risk of increased Type I error resulting from dichoto-
mization in the default case of (i) one or more manipulated
variables, (ii) a single measured variable, and (iii) a linear
relationship between the dependent variable and the measured
variable for each manipulated condition. In particular, they
demonstrate via simulation that, at least in the cases simulated
and reported, the median split procedure applied to the single
continuous predictor did not result in increased Type I error.
Based on this, IPKSP conclude “a median split is absolutely as
good as, and not one iota less appropriate than, a continuous
variable” in the default case. This conclusion fails to consider
(i) that costs other than increased Type I error are important
and (ii) that increased Type I error is a genuine risk in many
settings because, for example, researchers often possess
multiple measured variables that are collinear at least to some
degree.

Increased Type II error
Many researchers do—and we argue all should—seek not just

to avoid claiming that effects exist when they do not (i.e., Type I
error) but also to avoid claiming that effects do not exist when
they do (i.e., Type II error). To these researchers, we emphasize
that dichotomization via the median split procedure or otherwise
increases Type II error (i.e., reduces power; Cohen, 1983; Irwin
& McClelland, 2003; MacCallum et al., 2002; Maxwell &
Delaney, 1993) and this holds both in the default case and
otherwise. For example, consider a researcher who conducts a
study that is adequately powered (i.e., at 80%; Cohen, 1992) to
detect a correlation between two continuous variables. If the
researcher chooses to employ the median split procedure on one
of the variables and analyze the data via ANOVA rather than to
preserve the continuous nature of both variables and analyze the
data via linear regression, power drops from 80% to about 60%
(Cohen, 1983): the median split procedure turns an adequately
powered study into one that is little better than a coin toss. Put
differently, a researcher who runs studies like this and analyzes
the data using linear regression will detect 33% (i.e., (80%–
60%)/60%) more true effects than one who employs the median
split procedure and analyzes the data via ANOVA. A similar loss
of power from 80% to just under 60% occurs when a researcher
conducts a study that consists of a manipulated variable with two
conditions and a continuous variable and that is adequately
powered to detect the difference between the slopes in the two
conditions (i.e., the interaction). Thus, researchers interested in
interactions will detect many more true effects when they
preserve the continuous nature of their variables and analyze
their data via linear regression.

As a remedy for the decreased power associated with
dichotomization, IPKSP glibly suggest that “researchers can
simply draw large enough sample sizes to offset any reduction in
power.” We find this conclusion unsatisfying on at least two
dimensions. First, it fails to consider the real costs (monetary and
otherwise) associated with larger sample sizes. Second, the better
and more proper comparison is the one discussed in the prior
paragraph, namely that between linear regression and dichoto-
mization holding the sample size fixed; it is clear that regression
offers greater power for a fixed sample size.

That dichotomization can reduce power (i.e., increase Type
II error) is a clear problem that undermines IPKSP's conclusion
that “a median split is absolutely as good as, and not one iota
less appropriate than, a continuous variable.” Indeed, the
consequences of this loss of power are manifold. For example,
a researcher who dichotomizes may abandon the pursuit of a
research paradigm because evidence for an effect is lacking in a
given dataset. Similarly, when testing competing hypotheses,
authors and reviewers may ask whether sufficient power exists
to test whether an effect is moderated by an alternative variable.
To the extent that a researcher dichotomizes this variable and
the presence of an effect would have provided an alternative
explanation for the data, the loss of power undermines theory
testing; put differently, when researchers are hoping for the
absence of an effect, it is self-serving to use statistical
procedures with lower power.

In short, Type I and Type II error are both important and it is
their relative cost in a particular research setting that requires
consideration. In some settings, researchers may be relatively
more tolerant of Type I error while in others they may be
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relatively more tolerant of Type II error. For example, consider
various legal standards for the burden of proof under the
presumption of innocence (i.e., the null hypothesis is that one is
“innocent until proven guilty”); the standard of “proof beyond a
reasonable doubt” that applies in criminal proceedings is
relatively less tolerant of Type I error (i.e., convicting the
innocent) and thus more tolerant of Type II error (i.e., letting the
guilty go free) as compared to the standard of the “preponderance
of the evidence” that applies in most civil proceedings. Similarly,
a terminal patient may be willing to take a potentially unsafe
experimental drug while a pharmaceutical company fearing legal
risk may be unwilling to offer it. Regardless, preserving the
continuous nature of the variable and analyzing the data via linear
regression results in Type I error that is no greater and Type II
error that is less compared to dichotomizing the variable and
analyzing the data via ANOVA.
Inefficient effect size estimates
Though the null hypothesis significance testing paradigm is

the dominant statistical paradigm in academic training and
reporting in the biomedical and social sciences (see, for example,
Gigerenzer (1987), Gill (1999), Morrison and Henkel (1970),
Sawyer and Peter (1983)), this paradigm has received no small
degree of criticism over the decades (see, for example, Cohen
(1994), Gigerenzer (2004), McShane and Gal (in press), Meehl
(1978), Rosnow and Rosenthal (1989), Rozenboom (1960)) and
many have argued for a greater focus on effect sizes, their
variability, and the uncertainty in estimates of them (see, for
example, Cohen (1990), Fidler, Thomason, Cumming, Finch,
and Leeman (2004), Gelman (2015), Iacobucci (2005), Kelley
and Preacher (2012)). Without entering into this debate here, we
note that preserving the continuous nature of the variable and
analyzing the data via linear regression is superior to dichoto-
mizing the variable and analyzing the data via ANOVA on both
dimensions: the former performs as well or better on Type I and
Type II error as discussed above and yields more efficient
estimates of effect sizes (Cox, 1957; Gelman & Park, 2009;
Lagakos, 1988; Morgan & Elashoff, 1986). Researchers
interested in effect sizes will naturally favor linear regression as
its primary purpose is to facilitate the estimation and interpreta-
tion of effect sizes.
Perceived benefits

Perceived simplicity
IPKSP echo the argument of DeCoster, Iselin, and Gallucci

(2009, p. 350) that dichotomization via themedian split procedure
or otherwise “makes analyses easier to conduct and interpret”
particularly via ANOVA. However, we question whether this
really is the case, and, if so, easier compared to what? Prima facie,
linear regression seems easier to conduct and interpret relative to
dichotomization given that it both respects the continuous nature
of the measured variable X and does not require the specification
of a split point. At the very least, with contemporary statistical
software linear regression seems no more difficult than dichoto-
mization; indeed, both seem rather easy.
Related to the argument for simplicity is IPKSP's claim that
a “median split may be preferred as more parsimonious” than
alternative techniques such as linear regression. We fail to see
how this could be the case. A linear regression requires the
estimation of two parameters for each experimental group (i.e., an
intercept and a slope). Although dichotomization also requires
the estimation of two parameters for each experimental group
(i.e., the mean of the dependent variable in the low category and in
the high category), it also requires the estimation or specification
of the split point (e.g., the median). Thus, dichotomization requires
at least one additional parameter. As linear regression offers
superior predictive performance and requires fewer parameters,
Occam's razor (also known as the law of parsimony) favors it over
dichotomization. Further, although the median split procedure is
obviously not statistically efficient relative to linear regression,
perhaps surprisingly it is also not even statistically efficient relative
to alternative dichotomization procedures (see the section that
follows entitled Dichotomization for the general audience).

Preference
Some researchers may opt for dichotomization because of a

preference for ANOVA over linear regression. We speculate
that, given the myriad costs of dichotomization, this preference
results primarily from a lack of familiarity with plotting continuous
variables and analyzing them via linear regression. We believe
that lack of familiarity with a technique is generally not a reason
to abandon it—particularly when it is more informative, is
statistically superior, and is easy both conceptually and in terms of
implementation via software. Thus, we strongly urge researchers
who find themselves opting for dichotomization solely because of
a preference for ANOVA to learn more about and become
comfortable with regression instead of shoehorning their data into
an ANOVA. Greater familiarity with regression will allow such
researchers to provide a more informative analysis with greater
statistical power.

Focus on group (category) differences
IPKSP suggest that when researchers are studying group

differences (or category differences in the terminology of this
manuscript) and collinearity is not present, median splits are
appropriate (IPKSP Table 1). However, MacCallum et al. (2002)
note that researchers who wish to treat a variable as if it truly
consists of taxa (i.e., distinct groups or categories) should provide
evidence that the variable does indeed consist of taxa rather
than simply assuming it does so, for example, because they deem
it convenient. Indeed, desiring that a variable consists of taxa
does not make it so and treating it as such can be misleading
to readers, discard meaningful data, and reduce power. Whether
a measured variable consists of taxa is also independent of
whether the measured variable is easy or ethical to manipulate.

In addition, even when researchers are truly working with
taxa, the median is not necessarily the ideal split point and
indeed could be far from it. For example, if the true distribution
of the taxa is 70/30, splitting at the median mischaracterizes the
categories and will likely impair efforts to demonstrate distinct
consequences. Alternatively, if the variable consists of more
than two distinct taxa, dichotomization clearly mischaracterizes
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the categories. Further, settings exist where regression can be a
superior analytic approach compared to discretization even when
a variable consists of taxa (e.g., when the measured variable is
measured with error). We will not entertain these issues in greater
detail here, but the core points are that (i) neither the desire to
study distinct categories nor the potential convenience of them
implies that a construct truly consists of taxa, (ii) even when the
variable consists of taxa the median may not be the appropriate
split point and two may not be the appropriate number of
categories, and (iii) even when the variable consists of taxa linear
regression may still be a superior approach. Consequently,
researchers desiring to work with taxa should perform due
diligence to show the variable truly consists of taxa and to
identify them.

In addition to performing taxometric analyses to support the
argument that one is working with a variable that consists of
taxa, a simple “gut check” may be useful for researchers
wrestling with whether their construct is best represented as an
individual difference or a category difference. For example,
consider an attitude measure assessed on an 11-point continuous
scale where the median in the sample is 5.5. Further, suppose
the goal is to predict a behavioral measure such as purchase
frequency. If one were considering performing a median split
to identify the taxa, does one believe that a subject with an
attitude score of 6.5 will purchase as frequently as a subject
with an attitude score of 9.5? Does one believe that the
difference in purchase frequency for a subject with an attitude
score of 4.5 and a subject with an attitude score of 6.5 will be
identical to the difference in purchase frequency for a subject
with an attitude score of 1 and a subject with an attitude score
of 11? Does one believe the purchase frequency of a subject
with an attitude score of 4.5 is more like one with an attitude
score of 1 than one with an attitude score of 6.5? If a researcher
is uncomfortable answering in the affirmative to all of these
questions, this suggests that category difference is not central
to their research.

Finally, for researchers who opt to dichotomize a variable
because they have a preference for discussing low and high
categories, we note that such discussion is possible when
the continuous nature of the variable is preserved and the
data is analyzed via linear regression. This is possible as
discussed previously via, for example, spotlight analysis,
floodlight analysis, and simple slopes analysis. Thus, a pref-
erence for discussing low and high categories does not require
dichotomization.

Recommendation

Given the various costs of dichotomization as well as
the dubiousness of the various perceived benefits discussed in
the prior two subsections, we recommend that preserving the
continuous nature of the variable and analyzing the data via
linear regression remain the normative procedure both when
the statistical assumptions explored by IPKSP hold and, as
discussed below, more generally in research involving contin-
uous variables. We elaborate on this point in our concluding
section.
Graphical presentation of continuous data

To this point, we have compared the costs associated with
dichotomizing a measured variable and analyzing the data via
ANOVA as opposed to preserving its continuous nature and
analyzing the data via linear regression. Here, we consider the
graphical presentation of data. Graphical communication is
paramount in facilitating an understanding and appreciation of
data (Cleveland, 1993, 1994; Robbins, 2013; Tufte, 2001;
Tukey, 1977). Researchers have argued for increased transpar-
ency in reporting of measures, conditions, and exclusion criteria
(Simmons, Nelson, & Simonsohn, 2011), and we believe
informative graphs help with data transparency.

We consider three distinct graphical approaches to displaying
data in the default case: a scatterplot with regression lines
superimposed as depicted in Fig. 1, a median split plot as depicted
in Fig. 2, and a simple slopes plot (i.e., plotting the regression line
for each condition as the measured variable X varies from, for
example, one standard deviation below its mean to one standard
deviation above its mean) as depicted in Fig. 4. Comparison of
these plots yields several insights.

The median split plot and the simple slopes plot do not seem
particularly different. As alluded to by IPKSP, both involve critical
points that are selected somewhat arbitrarily (i.e., above and below
the median for the median split plot; one standard deviation above
and below the mean for the simple slopes plot). Indeed, we view
these plots as more similar than different, and both seem relatively
easy to discuss with a peer audience. That said, the simple slopes
plot both preserves and presents the continuous nature of the
measured variable, which is to some degree superior.

A much more complete presentation is provided by the
scatterplot. As in the simple slopes plot, the regression line for each
group is presented. However, whereas the simple slopes plot
involves presenting the line over a somewhat arbitrary range, the
scatterplot necessarily presents it over the range of the measured
variable X thereby allowing the easy observation of the difference
between the treatment and control group at each level of the
measured variable X as well as the slope for each group. Further,
the scatterplot presents the individual datapoints thereby depicting
the variability of the data. This allows one to observe minima and
maxima, the degree to which points deviate from the regression
line, potential outliers, and other characteristics.

Perhaps most important, the scatterplot allows one to easily
assess whether the assumption of linearity (or any other functional
form) is reasonable. For instance, it is clear from Fig. 1 that
linearity is a reasonable assumption for the data. On the other
hand, Fig. 3 demonstrates that the functional form assumed by the
median split procedure yields a poor fit.

In sum, the scatterplot is more informative than either the
median split barplot or the simple slopes lineplot. Further,
should one desire, it is possible to overlay on it markers of
deviation (e.g., the points representing one standard deviation
below and above the mean present in the simple slopes plot
can be easily added to the scatterplot). Importantly, this graph
is possible only by preserving the continuous nature of the
measured variable. We suggest that researchers make greater use
of scatterplots in reporting their data.



     Low High     

X

Y

Group

Control

Treatment

Fig. 4. Simple slopes plot in the default case. The x-axis indicates the measured variable, the y-axis indicates the dependent variable, and the color indicates the
treatment variable. The lines indicate a linear regression fit to the data and the points indicate one standard deviation below and above the mean of the measured
variable respectively. The points are selected somewhat arbitrarily and other values (e.g., two standard deviations below and above the mean of the measured variable,
the minimum and maximum of the measured variable) are possible.
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Dichotomization for the general audience

Statistical analysis via linear regression and graphical presen-
tation via scatterplots allow researchers to quickly communicate a
rich set of information to their peers who are or should be
well-versed in regression. Of course, researchers do not speak only
to fellow experts. For example, both readers of and writers for the
popular press may find regressions or scatterplots difficult to
understand. Thus, while we challenge the perceived simplicity or
convenience of dichotomization when communicating to a peer
audience, we believe that supplementing regression analyses with
analyses or plots that make use of dichotomization may sometimes
be valuable when speaking to a general audience. For example, a
general audience may have an easier time understanding the notion
of low and high categories as opposed to the intercept and slope of
a regression line or predictions made on the basis of them.

That said, we emphasize that, even for researchers interested
in communicating to general audiences, the median split is a
statistically rather poor way of choosing low and high
categories. Gelman and Park (2009) suggest that, when
speaking to a general audience, it would be better to split the
data into three categories such that the low and high categories
consist of 25% or 33% of the data each and to discard the
middle category (this recalls the “27 Percent Rule” in
psychology (Cureton, 1957; D'Agostino & Cureton, 1975;
Jensen, 1928; Kelley, 1939; Ross &Weitzman, 1964)). Gelman
and Park (2009) summarize the statistical rationale behind this
approach as follows:

We make the general recommendation that the high and low
categories each be set to contain 1/4 to 1/3 of the data, which
results in comparisons with approximately 80%–90% of the
efficiency of linear regression if the predictor X follows a
uniform or normal distribution. A loss of 10%–20% of
efficiency is not minor, and so we do not recommend that
the comparisons replace regressions but rather that they be
considered as useful supplementary summaries, especially
for the goal of communicating to a general audience…
discretizing X into three categories claws back about half
the efficiency lost by dichotomizing the predictor [at the
median], while retaining the simple interpretation as a high
versus low comparison.
In sum, their three-category procedure is just as interpretable as
the two-category median split procedure (because the middle
category is discarded) and is substantially more efficient from a
statistical perspective. In addition, by setting the low and high
categories to each contain 25% or 33% of the data as opposed
to 50% of the data as in the median split procedure, one gains
additional confidence that those in the low and high categories
are in fact relatively distinct from one another. This addresses,
in part, the concern about loss of individual-level variation and
reduced predictive performance discussed earlier.

Despite the benefit of their three-category procedure relative
to the median split procedure, we emphasize Gelman and Park
(2009)'s comment that, from a statistical perspective, the three-
category approach is not as efficient as linear regression: “a loss
of 10%–20% of efficiency is not minor” (see also Preacher,
Rucker, MacCallum, and Nicewander (2005)). Consequently,
we reiterate that statistical analysis via linear regression and
graphical presentation via scatterplots allows researchers to
quickly communicate a rich set of information to their peers in,
for example, peer-reviewed journals and that the occasional use
of dichotomization for a general audience need not and ought not
preclude that. Thus, we suggest that researchers use regression
and scatterplots in peer-reviewed journals and that they consider
the procedure of Gelman and Park (2009) instead of the median
split procedure when communicating to less sophisticated
audiences such as the popular press.

Image of Fig. 4
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Additional considerations

Nonlinear effects

Sometimes the relationship between the measured continuous
variable X and the dependent variable Y is not linear. Scatterplots
like those of Fig. 1 are extremely helpful here because they can
alert researchers to this issue—yet another important rationale for
presenting them. When faced with a nonlinear relationship, there
are several analytic strategies available to researchers. As in the
linear case, these can be divided into two classes: strategies that
preserve the continuous nature of the measured variable and
strategies that involve discretization.

One approach to nonlinear relationships that preserves the
continuous nature of the measured variable is to directly model
a particular functional form (e.g., exponential, logarithmic,
trigonometric) that is rooted in theory. For example, Fechner's
law in psychophysics states that the subjective perception of a
stimulus is proportional to the logarithm of the intensity of
the stimulus, thereby suggesting the logarithmic model Y =
β0 log(β1X) rather than the linear model Y = β0 + β1X. When
theory supports a particular functional form, this is the best
approach to modeling nonlinear relationships.

Unfortunately, such theory is often lacking, thereby necessi-
tating more empirical or statistical approaches. One such approach
that also preserves the continuous nature of the measured variable
is to employ transformations (e.g., logarithm, square root) of the
measured variable, the dependent variable, or both that result in a
linear relationship between the transformed variables. This is
similar to the functional form approach discussed in the prior
paragraph except that the transformation is selected based on the
data rather than based on theory. Two popular methods for
choosing transformations are the Box–Cox transformation (Box
& Cox, 1964) and the Bulging Rule (Mosteller & Tukey, 1977).
Transformations are particularly effective when the nonlinear
relationship is monotone.

Yet another approach that preserves the continuous nature of
the measured variable is to fit a nonlinear function directly. One
popular version of this approach is to fit a polynomial (i.e., add
terms X2, X3,…, Xd to the regression). We caution against this as
several superior alternatives such as splines, wavelets, kernel
smoothers, and local regression exist. Though these techniques
vary in their implementation, they all attempt to fit a function
that best fits the data. For more details, we refer the interested
reader to texts such as Bates and Watts (1988), Hastie,
Tibshirani, and Friedman (2009), James, Witten, Hastie, and
Tibshirani (2013), Lindsey (2001), McCullagh and Nelder
(1989), and Seber and Wild (2003).

Discretization represents another approach to nonlinear
relationships. When the relationship is nonlinear, we note that
dichotomization via the median split procedure or otherwise is
simply not appropriate as dichotomization necessarily conceals
nonlinear relationships: more than two categories are necessary
to reflect a nonlinear relationship while two suffice for a linear
one. Instead, discretization in this setting requires splitting the
continuous variable into a relatively large number of categories
(e.g., four, five, ten, or more); split points are typically chosen
using either (i) the quantiles of the observed data as split points
so that an equal number of subjects falls into each category or
(ii) equally-spaced values as split points so that each category is
of equal width (see, for example, Gal & McShane, 2012). The
mean of the observations in each category is then used for
prediction. An alternative approach is to choose the splits
points in a more strategic sense that reflects both the measured
variable as well as the dependent variable so as to provide a
better fit to the data; popular versions of this include tree
regression (Breiman, Friedman, Olshen, & Stone, 1984; Hastie et
al., 2009; James et al., 2013) and the method of O'Brien (2004).

Ordinal data

When both the measured variable and the dependent
variable are truly or approximately continuous (e.g., assessed
on a 100-point slider scale or a composite of many items assessed
on an 11-point scale), we recommend analysis via regression and
presentation via scatterplots. However, when one or more is
ordinal (e.g., assessed on a single 11-point scale), some additional
considerations are in order. In terms of graphical presentation, we
suggest a jittered scatterplot (Gelman & Hill, 2006) in place of a
standard one; jittering prevents datapoints with identical values of
the discrete variables from being plotted on top of one another (a
phenomenon known as overplotting). In terms of analysis, if only
the measured variable is ordinal, researchers can generally use
regression as if it were continuous; scatterplots will alert them
to departures from linearity that require more sophisticated
modeling of the ordinal measured variable (e.g., nonlinear
modeling approaches, discretizing in a manner that respects the
ordinal nature of the data, treating the data as nominal). When the
dependent variable is ordinal, however, researchers may want to
consider ordinal regression techniques (Gelman & Hill, 2006;
Lindsey, 2001; McCullagh & Nelder, 1989) that account for the
ordinal nature of the data; a similar consideration applies for
binary dependent variables.

Measurement error

When the measured variable is measured with error, standard
regression models are biased. For example, when there is a single
measured variable, as in the default case, the bias is towards zero
and is called attenuation bias. Thus, we suggest that researchers
consider errors-in-variables regression models (Buonaccorsi,
2010) that account for this.

We also note that some of the costs associated with
discretization discussed above can be exacerbated in this setting.
For example, when researchers discretize their data, subjects just
below and just above a split point are placed into separate
categories. However, when there is measurement error, subjects
assessed near the split point seem about as likely to truly belong to
the lower category as to the higher category; this applies even if a
categorical representation of the data is correct and the split point
accurately distinguishes between the categories. In this setting, the
approach of Gelman and Park (2009) of splitting the data into
three groups and discarding the middle group seems even more
advantageous for researchers considering dichotomization.
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Assessing measured variables

IPKSP note that the dichotomization of a single continuous
variable can create spurious effects when collinearity exists.
Thus, we appreciate their recommendation that researchers
interested in employing the median split procedure on a single
continuous measured variable first verify that it is uncorrelated
with the manipulated treatment variable(s).

While we reiterate the advantages of regression regardless of
the correlation between the measured variable and manipulated
variable(s), we note that this correlation is often likely to be
small in practice. In fact, it should only be large either when the
sample size is quite small (i.e., because with small samples the
measured variable might be unbalanced across the conditions)
or when the measured variable is assessed after the manipula-
tion but is affected by it. The remedy for the former situation
is rather straightforward: use reasonable sample sizes. In the
latter situation, researchers interested in understanding how
the measured variable moderates the treatment effect face a
dilemma and generally have to turn to alternative experimental
designs; for example, they might consider manipulating the
construct associated with the measured variable or measuring it
either long before or after the manipulation.

A related concern is that when the measured variable is
assessed before the dependent variable is assessed, the measure-
ment of the measured variable could affect themeasurement of the
dependent variable. Similarly, when the measured variable is
assessed after the dependent variable is assessed, the measurement
of the measured variable could be affected by the measurement
of the dependent variable. As above, alternative experimental
designs are generally required to address these concerns.

One solution to these issues involving measurement is to
consider only measured variables that (i) are assessed both after
the manipulation and after the dependent variable is assessed
and (ii) are relatively “objective” and therefore are unlikely to
be measured with error or to be affected by the manipulation or
A
X

Y

Fig. 5. Dotplot for data with discrete groupings. The points indicate the raw data, the x
variable, and the color indicates the treatment variable. The points are jittered hor
grouping and the black lines indicate plus and minus one standard error.
the measurement of the dependent variable. Examples of such
measured variables might include age, sex, and years of
education. Unfortunately, theoretical considerations constrain
the choice of measured variables and it may not be possible to
meet these two criteria in some research paradigms.
Multiple measured variables

IPKSP replicate prior research and show that the dichoto-
mization of multiple continuous variables can create spurious
effects. We thus appreciate their recommendation against the
dichotomization of multiple continuous variables.

We add to their discussion of multiple continuous variables
by noting that regression offers many strategies for quantifying
and dealing with collinearity (e.g., variance inflation factors,
penalized regression, principal components regression) that
can be used if necessary. Simply ignoring collinearity is one
such strategy that is often quite reasonable in practice.

We also return to a point made earlier, namely that comparisons
between different levels of a manipulated variable are causal while
comparisons between different levels of a measured variable are
merely associational. Such comparisons can be more difficult
to properly assess when there are multiple measured variables—
particularly when they are collinear. Consequently, we reiterate
that comparisons between different levels of a measured variable
should be interpreted cautiously, and that greater caution is
necessary when there are multiple measured variables particularly
when they are collinear.

Finally, we note that multiple measured variables are common
in research: quite seldom do researchers possess only a single
measured variable in addition to the manipulated variable(s) even
if they report or focus only on a single measure. The costs of
dichotomization discussed above thus apply to each of these
variables. These facts should be borne in mind when evaluating
the default case of IPKSP.
B

Group

Control

Treatment

-axis indicates the discrete measured variable, the y-axis indicates the dependent
izontally to prevent overplotting. The black points indicate the mean in each

Image of Fig. 5
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Graphical presentation of discrete groupings

We note for researchers working with truly discrete
groupings—whether these groupings have arisen because the
researchers are working with manipulated experimental condi-
tions or because the researchers are working with a combination
of manipulated experimental conditions and variables that consist
of taxa—far more informative methods of graphical presentation
than the standard barplot of Fig. 2 are available. For example,
consider the dotplot (of different data) presented in Fig. 5. The
points indicate the raw data, the x-axis indicates the discrete
measured variable (e.g., here consisting of two taxa), the y-axis
indicates the dependent variable, and the color indicates the
treatment variable. Finally, the black points indicate the mean in
each grouping and the black lines indicate plus and minus one
standard error. This dotplot provides a much fuller presentation of
the data and allows for the easy observation of the pairwise
differences between each of the four groupings. The dotplot also
depicts important features of the data such as minima, maxima,
the degree to which points deviate from the mean, potential
outliers, and other characteristics.We recommend that researchers
use such plots in place of the much less informative barplot.

Summation and best practices

IPKSP have brought the important topic of the discretization
of continuous variables to the forefront of consumer psychology.
IPKSP focus primarily on Type I error when there is one or more
manipulated treatment (or experimental) variables, a single
measured continuous variable, and a linear relationship between
the dependent variable and the measured variable for each
manipulated condition. In this setting, they suggest that concerns
about increased Type I error are misguided when considering
dichotomization in the absence of collinearity, and thus they “giv
[e] the green light to researchers who wish to conduct a median
split.”

Were researchers solely concerned with avoiding Type I
error, IPKSP would provide some degree of comfort. However,
even in the default case, dichotomization is riddled with
numerous costs including loss of individual-level variation,
Table 1
Costs of dichotomization. Selected costs of dichotomization with references. Iacobuc
are one or more manipulated variables, (ii) there is a single measured variable, and (ii
linear function for each manipulated condition.

Cost Selected references

Loss of individual-level variation Altman and Royston (2006), But
Reduced predictive performance Cohen (1983), Dawson and Weis
Increased Type I error Altman and Royston (2006), Butt

(2015), Lemon (2009), MacCall
Maxwell (1996)

Increased Type II error Altman and Royston (2006), Co
Humphreys (1978), Iacobucci et
(1993), Owen and Froman (2005

Inefficient or distorted effect size estimates Cox (1957), Gelman and Park (20
Misrepresentation of continuous constructs
as fictional groups

MacCallum et al. (2002)

Concealment of nonlinearity Altman and Royston (2006), Mac
reduced predictive performance, increased Type II error, and
inefficient effect size estimates. Outside the default case, not
only are these costs often present but also increased Type I error
can be a concern (e.g., when there are multiple dichotomized
variables, when there are multiple collinear variables, or when the
relationship between the dependent variable and the continuous
variable is nonlinear). Indeed, there is a large literature
summarized in Table 1 that notes these costs. Limiting ourselves
to quoting from only the titles of these works, we note they caution
dichotomization is “a practice to avoid” (Dawson&Weiss, 2012),
“a bad idea” (Royston, Altman, & Sauerbrei, 2006), and a
“heartbreak” (Streiner, 2002); call for its “death” (Fitzsimons,
2008); point out its “cost[s]” (Cohen, 1983), “perils” (Lemon,
2009), and “negative consequences” (Irwin &McClelland, 2003);
and simply ask “why” (Owen & Froman, 2005).

One might argue that it is the prerogative of researchers to
choose whether to bear these costs. For instance, if researchers
wish to choose statistical procedures with lower power, they
will bear the costs in terms of finding fewer true effects and
presumably publishing fewer papers. We disagree. Researchers
impose these costs not just on themselves but on the field as a
whole: the research community has a vested interested in lower
Type I and Type II error, more accurately reported and more
efficient effect size estimates, and richer and more informative
analyses and thus has the right—and perhaps the obligation—
to demand as much from its members. In addition, when the
absence of an effect is in a researcher's interest, it is clearly
self-serving to use statistical procedures with lower power.

As such, we believe regression ought to be the normative
tool of analysis when working with continuous variables both
when the statistical assumptions explored by IPKSP hold and
more generally. Simply put, regression more accurately
represents the data and it lacks the numerous costs associated
with dichotomization. Further, scatterplots with regression lines
superimposed like Fig. 1 provide a powerful format for
graphical presentation of data and results, and we encourage
researchers to make ample use of such plots.

In light of this, we echo and extend IPKSP's call for greater
justification of the use of dichotomization: merely claiming that
one is interested in category differences and demonstrating that
ci et al. (2015) note that the increase in Type I error is eliminated when (i) there
i) the relationship between the dependent variable and the measured variable is a

ts and Ng (2009), MacCallum et al. (2002)
s (2012), MacCallum et al. (2002)
s and Ng (2009), Dawson and Weiss (2012), Fitzsimons (2008), Iacobucci et al.
um et al. (2002), Owen and Froman (2005), Vargha, Rudas, Delaney, and

hen (1983), Dawson and Weiss (2012), Farewell, Tom, and Royston (2004),
al. (2015), Irwin and McClelland (2003), Lemon (2009), Maxwell and Delaney
), Royston et al. (2006), Streiner (2002), Vargha et al. (1996)
09), Hunter and Schmidt (1990), Lagakos (1988), Morgan and Elashoff (1986)

Callum et al. (2002)



677D.D. Rucker et al. / Journal of Consumer Psychology 25, 4 (2015) 666–678
collinearity is absent should not be accepted as sufficient
justification for dichotomization given the costs associated with
it. We also reiterate that employing dichotomization because
one is more comfortable with ANOVA than with regression is a
poor justification. The choice of a statistical procedure should
largely be based on its statistical properties. Thus, we strongly
urge researchers who perceive regression as more difficult than
ANOVA to learn more about regression, to embrace it, and to
benefit from its superior performance in terms of statistical
inference and presentation of results.

In sum, we are far less sanguine than IPKSP with regard to
dichotomization. Rather than giving researchers a “green light”
to dichotomize, we hope we have put them in the mindset of
carefully thinking about what they are doing and whether the
costs are worth bearing. We hope that for many researchers, the
benefits of regression will be recognized and realized. For this
reason, we encourage researchers, as both authors and reviewers,
to remain skeptical of the use of dichotomization and more
generally of discretization without proper justification.
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