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Abstract

Numerous statistics have been proposed to measure offensive ability in Major League
Baseball. While some of these measures may offer moderate predictive power in certain situations,
it is unclear which simple offensive metrics are the most reliable or consistent. We address this
issue by using a hierarchical Bayesian variable selection model to determine which offensive
metrics are most predictive within players across time. Our sophisticated methodology allows for
full estimation of the posterior distributions for our parameters and automatically adjusts for
multiple testing, providing a distinct advantage over alternative approaches. We implement our
model on a set of fifty different offensive metrics and discuss our results in the context of
comparison to other variable selection techniques. We find that a large number of metrics
demonstrate signal. However, these metrics are (i) highly correlated with one another, (ii) can be
reduced to about five without much loss of information, and (iii) these five relate to traditional
notions of performance (e.g., plate discipline, power, and ability to make contact).
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1 Introduction
I don’t understand. All of a sudden, it’s not just BA and Runs Scored,
it’s OBA. And what is with O-P-S? - Harold Reynolds

The past decade has witnessed a dramatic increase in interest in baseball
statistics, as evidenced by the popularity of the books Moneyball (Lewis, 2003) and
Curve Ball (Albert and Bennett, 2003). Beyond recent public attention, the quan-
titative analysis of baseball continues to be active area of sophisticated research
(e.g., James (2008), Kahrl et al. (2009)). Traditional statistics such as the batting
average (AVG) are constantly being supplemented by more complicated modern
metrics, such as the power hitting measure isolated power (ISO; Puerzer (2003)) or
the base-running measure speed (SPD; James (1987)). The goal of each measure
remains the same: estimation of the true ability of a player on some relevant dimen-
sion against a background of inherent randomness in outcomes. This paper will
provide a statistical framework for evaluating the reliability of different offensive
metrics where reliability is defined by consistency or predictive performance.

There has been substantial previous research into measures of offensive per-
formance in baseball. Silver (2003) investigates the randomness of interseason
batting average (AVG) and finds significant mean reversion among players with
unusually high batting averages in individual seasons. Studeman (2007b) used sev-
eral players to investigate relationships between infield fly balls, line drives, and
hits. Null (2009) uses a sophisticated nested Dirichlet distribution to jointly model
fourteen batter measures and finds that statistical performance is mean reverting.
Baumer (2008) uses algebraic relationships to demonstrate the superiority of on-
base percentage (OBP) over batting average (AVG).

Considerable interest surrounds the batting average on balls in play (BABIP).
Studeman (2007a) considers four defense-independent pitching statistics (DIPS) for
individual batters: walk rate, strikeout rate, home-run rate, and BABIP. These four
measures form a sequence where each event is removed from the denominator of
the next event (e.g., a player cannot strike out if he walks, he cannot hit a home run
if he walks or strikes out, etc.). Studeman (2007b) finds that the first three measures
are quite consistent whereas BABIP is quite noisy. This BABIP measure has been
modified in many subsequent works. Lederer (2009) considers BABIP and ground-
ball outs in the 2007 and 2008 seasons and concludes that handedness and position
(a proxy for speed) are useful for predicting the two measures. Brown (2008) builds
on this analysis by finding five factors that are predictive of BABIP and groundball
outs: the ratio of pulled groundballs to opposite field groundballs, the percentage of
grounders hit to center field, speed (SPD), bunt hits per plate appearance, and the
ratio of home runs to fly balls.
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Fair (2008) analyzes the effects of age on various offensive metrics for hit-
ters. Kaplan (2006) decomposes several offensive statistics into both player and
team level variation, and finds that player-level variation accounts for the large ma-
jority of observed variation.

Our own contribution focuses on the following question: which offensive
metrics are consistent measures of some aspect of player ability? We use a hierar-
chical Bayesian variable selection model to partition metrics into those with predic-
tive power versus those that are overwhelmed by noise. Scott and Berger (2006) use
a similar variable selection approach to perform large-scale analysis of biological
data. They provide a detailed exploration of the control of multiple testing that is
provided by their hierarchical Bayesian framework, which is an advantage shared
by our approach.

We implement our model on fifty offensive metrics using MCMC methods
and present results for several parameters related to the within-player consistency
of these offensive measures. For external validation, we compare the results of our
posterior inference to those generated by various special cases of our model as well
as to another popular variable selection approach, the Lasso (Tibshirani, 1996).

A large number of the fifty metrics demonstrate some degree of signal and
there is considerable overlap with the results of the Lasso. We identify five metrics
which stand out. These five metrics can account for much of the variation in the
other forty-five. Furthermore, they are related to traditional notions of performance
(e.g., plate discipline, speed, power, ability to make contact).

2 Methodology
Our goal is a model that can evaluate offensive metrics on their ability to predict the
future performance of an individual player based on his past performance. A good
metric is one that provides a consistent measure for that individual, so that his past
performance is indicative of his future performance. A poor metric has little predic-
tive power: one would be just as well served (or possibly better served) predicting
future performance by the overall league average rather than taking into account
past individual performance. We formalize this principle with a Bayesian variable
selection model for separating out players that are consistently distinct from the
overall population on each offensive measure. In addition to providing individual-
specific inferences, our model also provides global measures of the signal in each
offensive measure.

Our data comes from the Appelman (2009) database. We have fifty available
offense metrics which are outlined in Appendix A. The data contains 8,596 player-
seasons from 1,575 unique players spanning the 1974-2008 seasons (data for ten of
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the fifty offensive metrics were not available before the 2002 season so for those
metrics we fit our model on 1,935 player-seasons from 585 unique players1).

2.1 Hierarchical Bayesian Variable Selection Model

For a particular offensive metric, we let yi j denote the metric value for player i dur-
ing season j. We model each metric independently, and, in particular, the player-
seasons yi j for each player’s performance on a given metric are modeled as fol-
lowing a normal distribution with underlying individual player mean (µ + αi) and
individual player-season variance wi j ·σ2,

yi j ∼ Normal(µ +αi , wi j ·σ2). (1)

The parameter µ denotes the overall population mean (i.e., the Major League Base-
ball mean) for the given offensive metric and the αi denote the player-specific dif-
ferences from the population mean µ .

The weight term wi j addresses the fact that the variance of a season-level
offensive metric for player i in season j should depend on player i’s number of
opportunities in season j. For metrics which are rates (e.g., on-base percentage
(OBP), batting average (AVG)), the player-seasons with more opportunities should
have a lower variance while, for metrics which are totals (e.g., homeruns (HR),
hits (H)), the variance should be higher. In order to achieve this behavior, we set
wi j = ū/ui j for rates and wi j = ui j/ū for totals where ui j denotes the weight function
for player i in season j and ū represents the mean weight over all player-seasons.
The raw weights ui j used for each offensive metric are given in Appendix A.

With this formulation, the parameter σ2 represents the global variance of
the offensive metric for player-seasons with an average number of opportunities.
The global parameters µ and σ2 are unknown and are given the following prior
distributions,

µ ∼ Normal(0,K2) σ
2 ∼ Inverse−Gamma(α0,β0). (2)

We tried several settings for the hyperparameters K2, α0, and β0 to insure our pos-
terior inferences were not sensitive to the values chosen and settled on K2 = 10000,
α0 = .01, β0 = .01 as non-informative choices for these prior distributions.

We also need to address our unknown player-specific parameters αi. We
could employ a conventional Bayesian random effects model which utilizes a Nor-
mal prior distribution shared by all αi parameters. Instead, we propose a more so-
phisticated model for the unknown individual αi’s; our strategy builds on Bayesian

1These metrics are BUH, BUH/H, FB/BIP, GB/BIP, GB/FB, HR/FB, IFFB/FB, IFH, IFH/H, and
LD/BIP.
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variable selection methodologies (George and McCulloch, 1997) and allows differ-
entiation between players who are consistently different from the population mean
versus players who are not.

We formulate our sample of players as a mixture of (i) “zeroed” players
for whom αi = 0 versus (ii) “non-zeroed” players for whom αi 6= 0. We use the
binary variable γi to denote the unknown group membership of each player i (i.e.,
γi = 0⇔ αi = 0; γi = 1⇔ αi 6= 0). We denote by p1 the unknown proportion of
players that are in the non-zeroed group (γi = 1) and use the prior distribution αi ∼
Normal(0,τ2) for them. For the players in the zeroed group, we have a point-mass
at αi = 0. The variance parameter τ2 represents the differences among individual
players who themselves differ from the overall league mean. When τ2 is large
(particularly in relation to σ2), this means that there can be a potentially wide gulf
between zeroed and non-zeroed players.

George and McCulloch (1997) demonstrate that using a pure point-mass for
a mixture component complicates model implementation. They suggest approxi-
mating the point-mass with a second normal distribution that has a much smaller
variance, v0 · τ2, where v0 is a hyperparameter set to be quite small. In our model
implementation, we set v0 = 0.01, meaning that the zeroed component has 1/100th
of the variance of the non-zeroed component. Thus, our mixture model on the
player-specific parameters is

αi ∼

{
Normal(0 , τ2) if γi = 1
Normal(0 , v0 · τ2) if γi = 0.

(3)

We illustrate this mixture in Figure 1.
The last two parameters of our model are τ2 and p1. We give the following

prior distribution to τ2,

τ
2 ∼ Inverse−Gamma(ψ0,δ0). (4)

Gelman (2006) cautions that the inverse-Gamma family, when used as a prior on
the group-level variance (i.e., the variance τ2 of the player coefficients αi in our
setting), can sometimes be surprisingly informative even when ψ0 and δ0 are set to
low values. Instead, he suggests a uniform prior on τ ,

p(τ) ∝ 1 ⇒ p(τ2) ∝ 1/τ (5)

which we implement by setting ψ = −1/2 and δ0 = 0 in Equation 4 thereby pre-
serving conjugacy.
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Figure 1: Illustration of mixture for player-specific parameters αi. The black curve
approximates a point mass at zero with a normal component that has a very small
variance relative to the normal component for the non-zeroed players.

Finally, we allow the mixing proportion parameter p1 to be unknown with
prior distribution

p1 ∼ Uniform(0,1). (6)

As discussed by Scott and Berger (2006), allowing p1 to be estimated by the data
provides an automatic control for multiple comparisons, an important advantage
of our Bayesian methodology. Alternative approaches such as standard regression
testing of individual means would require an additional adjustment for the large
number of tests (i.e., 1,575 players) being performed.

The mixing proportion p1 is also an important model parameter for eval-
uating the overall reliability of an offensive metric as it gives the probability that
a randomly chosen player shows consistent differences from the population mean.
Therefore, metrics with high signal should have a high p1.

2.2 MCMC Implementation

Let y be the vector of all player-seasons yi j for a given offensive metric. Similarly,
let ααα and γγγ denote the vectors of all αi’s and all γi’s respectively. The use of conju-
gate prior distributions outlined in Section 2 allows us to implement our model with
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a Gibbs sampler (Geman and Geman (1984)) where each step has a nice analytic
form. Specifically, we iteratively sample from the following conditional distribu-
tions of each set of parameters given the current values of the other parameters.

1. Sampling µ from p(µ|ααα,σ2,y):
Letting i index players and j seasons within a player, the conditional distribution
for µ is

µ|ααα,σ2,y ∼ Normal

 ∑
i, j

yi j−αi
wi j·σ2

∑
i, j

1
wi j·σ2 + 1

K2

,
1

∑
i, j

1
wi j·σ2 + 1

K2

 .

2. Sampling ααα from p(ααα|µ,γγγ,σ2,τ2,y):
Again letting i index players and j seasons within a player, the conditional distribu-
tion for each αi is

αi|µ,γi,σ
2,τ2,y ∼ Normal

 ∑
j

yi j−µ

wi j·σ2

∑
j

1
wi j·σ2 + 1

τ2
i

,
1

∑
j

1
wi j·σ2 + 1

τ2
i


where τ2

i = τ2 if γi = 1 or τ2
i = v0 · τ2 if γi = 0.

3. Sampling σ2 from p(σ2|µ,ααα,y):
Letting N be the total number of observed player-seasons, the conditional distribu-
tion for σ2 is

σ
2|µ,ααα,y ∼ Inv−Gamma

(
α0 +

N
2

, β0 +∑
i, j

(yi j−αi−µ)2

2 ·wi, j

)
.

4. Sampling τ2 from p(τ2|ααα):
Letting m be the number of players, the conditional distribution for τ2 is

τ
2|ααα ∼ Inv−Gamma

(
ψ0 +

m
2

, δ0 +∑
i

α2
i

2 · vi

)

where vi = 1 when γi = 1 and vi = v0 if γi = 0.
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Again letting i index players, the conditional distribution of each γi is a Bernoulli
draw with probability

p(γi = 1|αi,τ
2, p1) =

p1 · exp
(
− α2

i
2τ2

)
(1−p1)√

v0
· exp

(
− α2

i
2v0τ2

)
+ p1 · exp

(
− α2

i
2τ2

) .

6. Sampling p1 from p(p1|γγγ):
Finally, the mixing proportion p1 has the conditional distribution

p1|γγγ ∼ Beta

(
1+∑

i
γi , 1+∑

i
(1− γi)

)
.

Sampling Scheme:
We independently run our model and Gibbs sampler for each of our fifty offensive
metrics. In particular, we run each Gibbs sampler for 60,000 iterations and discard
the first 10,000 iterations as burn-in. The remainder of the chain is thinned to retain
every 50th iteration in order to eliminate autocorrelation of the sampled values. We
present our results from our estimated posterior distributions in Section 3.

2.3 Submodels, Identifiability, and Signal Assessment

In Section 4.1, we consider three submodels (i.e., special cases of the main model
outlined in Sections 2.1 and 2.2) for the purpose of validation. While one often em-
ploys model selection criteria such as the Deviance Information Criterion (Spiegel-
halter et al., 2002) or Bayes Factors (Kass and Raftery, 1995) for this purpose, such
criteria prove intractable here (the discrete γi and improper prior on τ2 rule out DIC
and Bayes Factors respectively). Instead, we opt to compare models using a holdout
sample (see Section 4.1 for details).

The first special case of our model is the standard Bayesian random effects
mentioned above. Unlike our mixture prior on the αi, the Bayesian random effects
model places a single Normal prior an all αi. While this is the standard way to
think of the random effects model, there is another way to think of it that is more
natural in the context of our mixture model: the Bayesian random effects model is
the special case of our model when p1 is fixed at one. It is a partial pooling model
where each player’s mean µ +αi is estimated as a weighted average of his observed
average and overall league average.

5. Sampling γγγ from p(γγγ|ααα,τ2, p1):
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(Gelman and Hill, 2006). The no pooling model estimates each player’s mean µ +
αi by his observed mean. It is thus the special case of our model that sets p1 to one
and τ2 to ∞. The complete pooling model, on the other hand, estimates each player
to have the same mean. That is, αi is set to zero for all i. There are two ways to
obtain the complete pooling model from ours: (i) fix p1 at zero or (ii) fix p1 at one
and τ2 at zero.

The fact that the complete pooling model can be derived from our model
in two ways seems to present a problem: our model is not identifiable. In fact,
since we have suggested that p1 is an important model parameter for evaluating
the overall reliability of an offensive metric (because it gives the probability that a
randomly chosen player shows consistent differences from the population mean),
the problem appears even more grave because the complete pooling model can be
obtained from the main model by setting p1 to its extreme values of zero or one.
The former would suggest a metric lacks signal whereas the latter suggests it has
high signal.

In fact, this problem goes beyond identifiability. The likelihoods of the main
model and various submodels will be very similar when τ2 is small relative to σ2,
regardless of the value of p1. Thus, they will result in nearly identical estimates of
player performance.

Hence, having a large fraction of players differ from the overall league mean
(i.e., having a high p1) is a necessary but not sufficient condition for a metric to be
high signal. If a metric is going to be useful to managers, these differences have to
be meaningful, that is practically significant and not merely statistically significant.
This will be the case when τ2 is large relative to σ2. Hence, to evaluate metrics,
we look at two quantities derived from our model: (i) p̂1, the posterior mean of
the p1 parameter, and (ii) r̂, the posterior mean of τ2/(τ2 + σ2). The former gives
the fraction of players who differ from the league mean and the latter gives the
fraction of the variance in the response that is due to individual player differences
as opposed to chance. When both of these quantities are high, a metric contains a
large amount of signal.

3 Results
Before implementing our Bayesian variable selection model on the fifty offense
metrics outlined in Appendix A, we examined the distribution of the data observed
for each one in order to assess the normality assumption of Equation 1. For the
majority of these metrics (36/50), the assumption proved reasonable. However,

The other two special cases of our model are also subcases of the Bayesian
random effects model: the “no pooling” model and the “complete pooling” model
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a smaller subset of metrics (14/50) exhibit substantial skewness2. Examples are
triples (3B) and stolen bases (SB) where the vast majority of players have very
small values but there also exists a long right tail consisting of a small number
of players with much larger values. The large proportion of zero values also makes
many of these metrics less amenable to transformation. We proceeded to implement
our model on all fifty measures, but in the results that follow we will differentiate
between those measures that fit the normality assumption versus those that do not.

3.1 Evaluating Signal in Each Offensive Measure

As discussed in Section 2.1, there are two aspects of our posterior results which
are relevant for evaluating the overall signal in an offensive metric: the fraction of
players who differ from the league mean (estimated by p̂1) and the fraction of the
variance in the response that is due to individual player differences as opposed to
chance (estimated by r̂). When both of these are large, individual mean estimates
will have substantially greater predictive power than the overall league mean.

In Figure 2, we plot p̂1 against r̂ for our fifty offensive metrics (note, the
values plotted for this and all similar figures can be found in Appendix B). Metrics
colored in red were the majority that were reasonably approximated by a normal
distribution whereas metrics colored in black were not. Metrics which appear in the
upper right portion of the plot are those that our model identifies as demonstrating
high signal.

Several facts stand out from this figure. First, our model tends to identify
the non-normally distributed metrics given in black as being low signal. Outlying
datapoints which violate the model assumptions do not automatically “fool” the
model into thinking the metric is high signal. Second, while a large number of the
normal metrics given in red have a large p̂1, there is substantial variance in r̂. Third,
the distribution of the r̂ has no sharp breaks and, consequently, there is no natural
boundary between metrics which have high and low signal. That said, nine metrics
appear to have the highest signal: K/PA, GB/BIP, FB/BIP, HR/FB, SPD, HR/PA,
BB/PA, ISO, and K. All nine of these have p̂1 near one and r̂ among the highest of
all metrics. For the remainder of the discussion, we restrict ourselves K/PA, SPD,
ISO, BB/PA, and GB/BIP3.

2These metrics are 3B, 3B/PA, BUH, BUH/H, CS, CS/OB, HBP, HDP/PA, IBB, IBB/PA, SB,
SB/OB, SBPA, and SH.

3We do this because (i) K/PA and K, (ii) HR/FB, HR/PA, and ISO, and (iii) GB/BIP and FB/BIP
measure more or less the same thing. The first set measures strikeouts, the second power hitting,
and the third the tendency to hit grounders as opposed to fly balls.
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Figure 2: Plot of r̂ against p̂1: p̂1 is the posterior mean of the p1 parameter and
estimates the fraction of players who differ from the league mean whereas r̂ is the
posterior mean of τ2/(τ2 + σ2) and estimates the fraction of the variance in the
response that is due to individual player differences as opposed to chance. The
values plotted here can be found in Appendix B.

This set of five “best” metrics spans several different aspects of offensive
ability: K/PA and BB/PA are all related to plate discipline, SPD represents speed,
ISO measures hitting power, and GB/BIP captures the tendency to hit ground balls.
Furthermore, they have some support in the literature. Studeman (2007a) finds that
strikeout rate (K/PA) and walk rate (BB/PA) are very consistent. We also have
confirmation on the low end: like Studeman (2007a), we find that BABIP is a low
signal metric.

A final interesting fact is that ratio-based metrics seem to have lower sig-
nal than their two constituent parts. For instance, while both GB/BIP and FB/BIP
demonstrate high signal in Figure 2, their ratio GB/FB demonstrates much less sig-
nal. A similar fact holds for K/PA and BB/PA on the one hand and BB/K on the
other.

3.2 Examining Individual Players

In this section, we examine individual players by focusing on four of the five high
signal metrics: ISO, BB rate, SPD and K rate. Each of these metrics measures a
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ISO - Isolated Power BB/PA - Walk Rate
Player Mean (µ +αi) Player Mean (µ +αi)

Estimate SD Estimate SD
Mark McGwire 0.320 0.010 Barry Bonds 0.204 0.004
Barry Bonds 0.304 0.008 Gene Tenace 0.186 0.007
Ryan Howard 0.293 0.016 Jimmy Wynn 0.183 0.010
Jim Thome 0.287 0.009 Ken Phelps 0.176 0.011
Albert Pujols 0.281 0.011 Jack Cust 0.176 0.012

Population Mean µ̂ = 0.142 Population Mean µ̂ = 0.087
SPD - Speed K/PA - Strikeout Rate

Player Mean (µ +αi) Player Mean (µ +αi)
Estimate SD Estimate SD

Vince Coleman 8.55 0.30 Jack Cust 0.388 0.018
Jose Reyes 8.22 0.40 Russell Branyan 0.376 0.021
Carl Crawford 8.14 0.36 Melvin Nieves 0.371 0.020
Willie Wilson 8.13 0.25 Rob Deer 0.351 0.010
Omar Moreno 7.89 0.31 Mark Reynolds 0.347 0.018

Population Mean µ̂ = 4.11 Population Mean µ̂ = 0.166

Table 1: Top players for four high signal metrics. For each player, we provide
the posterior estimate and posterior standard deviation for their individual mean
(µ +αi). The estimated γ̂i was equal to 1.00 for each of these cases. The posterior
estimate of the population mean µ is also provided for comparison.

different aspect of offensive ability: ISO relates to hitting power, BB rate relates
to plate discipline, SPD relates to speed, and K rate relates to the ability to make
contact. We further explore our results by focusing on the top individual players
for each of these measures, as estimated by our model. In Table 1, we show the top
five players in terms of their estimated individual means (µ +αi) for each of these
metrics.

For the isolated power (ISO) metric, each of the top five players are well-
known hitters that have led the league in home runs at least once during their ca-
reers. Even more striking is the magnitude of their estimated individual means
(µ + αi): they are more than double the population mean µ̂ = 0.142. Barry Bonds
appears in the top five baseball players for both ISO and BB rate, and, more gener-
ally, there is a fairly strong correspondence between these two metrics beyond the
results shown in Table 1. This finding suggests that there is correlation between the
skills that determine a batters plate discipline and the skills that lead to hitting for
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power. Other well-known power hitters ranking high on BB rate (but outside of the
top five) are Jim Thome, Mark McGwire, Frank Thomas, and Adam Dunn. Nev-
ertheless, Bonds stands out dramatically with a walk rate that is almost 2% higher
than the next highest player–about thirteen extra walks per season. This difference
seems especially substantial when taking into account the small standard deviation
(0.4%) of his estimated mean.

Jack Cust appears in the top five baseball players for both BB rate and K rate.
This is especially interesting since having a high BB rate is beneficial whereas hav-
ing a high K rate is detrimental. However, it is not particularly surprising: players
with good plate discipline will frequently be in high count situations that can also
lead to strike outs. Cust is especially well-known for having a “three-outcome” (i.e.
walk, strikeout, or home run) approach at the plate. Moving beyond the top five
players, other power hitters such as Ryan Howard, Adam Dunn, and Jim Thome
also exhibit high K rates. The top players on Bill James’ speed metric SPD are
a much different set of players than those highlighted by the other three metrics.
The highest estimated individual mean is held by former Rookie of the Year Vince
Coleman who led the National League in stolen bases from 1985 to 1990.

A general theme of all four metrics examined in Table 1 is that there is
consistency within players, as indicated by the relatively small standard deviations,
but clear evidence of substantial heterogeneity between players since the top players
are estimated to have such a large deviation from the population mean. These two
factors are an ideal combination for a high signal offensive metric and are precisely
what is measured by having a high r̂.

4 External Validation and Principal Components
In this section, we perform various analyses of our data and model relative to exter-
nal methods. First, we compare our model to the submodels outlined in Section 2.3.
Second, we compare our results to an alternative variable selection approach based
upon the Lasso. Finally, we explore the correlation between offensive metrics with
a principal component analysis.

4.1 Comparison to Submodels

We begin our comparison of our general model to its three submodels by recalling
the definition of high signal metric versus a low signal metric. A high signal metric
is one that provides a consistent measure for an individual so that a player’s past
performance is indicative of his future performance. A low signal one has little
predictive power: one would be just as well served predicting future performance
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by the overall league average rather than taking into account past individual perfor-
mance. This implies a simple way to directly assess this question: we can hold out
a portion of our data and compare the predictions of our model to the mean-only
complete pooling model outlined in Section 2.3. In particular, we hold out the 2008
season values for each player, estimate the two models (i.e., our mixture model
and the mean-only complete pooling model) using the values from seasons prior to
2008, and then use two models to forecast the 2008 season values.

For each posterior draw j from our mixture model, we obtain a league mean
µ j, a set of player deviations from the league mean {α j

i }i, and a variance σ2 j.
We can thus get a predicted value for player i on posterior draw j by simulating
y j?

i ∼ Normal(µ j + α
j

i ,wi,2008 ·σ2 j) from the likelihood. Finally, we can average
these over all of our posterior draws to form our prediction ŷMM

i,2008 = ∑
J
j=1 y j?

i /J for
player i (where MM refers to our mixture model prior on the αi).

Similarly, for each posterior draw j from the complete pooling model, we
obtain a league mean µ̃ j and a variance σ̃2 j. We can thus get a predicted value for
player i on posterior draw j by simulating ỹ j?

i ∼ Normal(µ̃ j,wi,2008 · σ̃2 j) from the
likelihood. Finally, we can average these over all of our posterior draws to form our
prediction ŷCP

i,2008 = ∑
J
j=1 ỹ j?

i /J for player i (where CP denotes complete pooling).
Using the heldout yi,2008, we can calculate the root mean square error (RMSE)

of our model’s predictions, RMSEMM =
√

1
N ∑

N
i=1(yi,2008− yMM

i,2008)2 where i indexes

the N players who played in 20084. We can do likewise for the complete pooling
model. For high signal metrics, our model should have a substantially lower RMSE.

Evidence for this is shown in Figure 3 which plots our model’s p̂1 and r̂
against the RMSE of our mixture model relative to the RMSE of the mean-only
complete pooling model (i.e., Relative RMSE = RMSEMM/RMSECP; small values
of this quantity denote good performance by our model). There is dramatic corre-
lation between Relative RMSE and r̂. Metrics with a low r̂ are ones for which our
model performs similarly to the mean-only model–precisely the definition of a low
signal metric. Concomitantly, our model dramatically outperforms the mean-only
model for those metrics we previously identified as high signal in Section 3.1 (i.e.,
those with high p̂1 and high r̂). For example, for strikeout rate, our model has an
RMSE that is less than half of that of the mean-only complete pooling model

The low correlation between p̂1 and Relative RMSE is not surprising given
(i) the low correlation of p̂1 and r̂ and (ii) the high correlation between r̂ and Rela-

4Since our aim is to estimate the consistency of a player with respect to a metric over time, we
excluded from the RMSE calculation all players for whom 2008 was the first year of play. There
is no notion of consistency for these players since it is their one and only year in the dataset. The
analysis would not be much changed by including them, however, since both models predict the
league mean for such players.
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Figure 3: Left: Plot of p̂1 against the RMSE of the full model relative to the com-
plete pooling model. Right: Plot of r̂ against the RMSE of the full model relative
to the complete pooling model. The values plotted here can be derived from those
given in Appendix B.

tive RMSE. However, we do not view this low correlation as problematic and rather
view it as an extra dimension on which to screen metrics. In particular, we view the
r̂ / Relative RMSE dimension as serving to screen metrics on how much individual
players vary on them versus the inherent season to season variation in them (i.e., τ2

versus σ2). On the other hand, the additional dimension provided by p̂1 facilitates
further differentiation among metrics. For instance, among metrics that have high r̂
/ low Relative RMSE, p̂1 differentiates (i) normal metrics from the skewed metrics
and, within the normal metrics, (ii) ratio metrics such as BB/K and GB/FB from
non-ratio metrics.

We are encouraged that (i) those metrics flagged by our model to have high
signal (i.e., those with high p̂1 and r̂) substantially outperform the mean-only model
on holdout prediction and (ii) those flagged to have low signal perform similarly to
the mean-only model on holdout prediction. It means that the metrics identified as
high signal fit the natural definition of it: metrics that players perform consistently
with respect to such that predictions based on individual information trump the
league mean as a prediction. Moreover, it suggests that, when the mean-only model
is “correct”, our model identifies it as the appropriate special case and estimates it.

That said, one wonders whether allowing the point mass mixture at the
league mean (and thereby forcing some fraction of players to be estimated at the
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Figure 4: Holdout RMSEs of the main mixture model and three submodels dis-
cussed in Section 2.3 relative to the holdout RMSE of the mean-only complete
pooling model. The mixture model is given in black, the random effects model in
red, the no pooling model in green, and the complete pooling model in blue. The
x-axis is ordered by size of the complete pooling model RMSE. Normal measures
are represented by filled circles and non-normal ones by open circles. The values
plotted here can be derived from those given in Appendix B.

league mean) is too restrictive. Perhaps some of the metrics identified as low sig-
nal do indeed contain signal and that player-specific information would trump the
league mean as a predictor. In order to assess this, we fit both the Bayesian random
effects model (p1 fixed at one) and the no pooling model (p1 fixed at one and τ2

fixed at ∞), both of which use player-specific information for all players. We then
drew predictions from the posterior distribution following exactly the same process
outlined above for the mixture model and calculated RMSEs on the holdout sample.

We plot the holdout RMSEs of all four models relative to the mean-only
model in Figure 4. As can be seen, our mixture model in black never performs
meaningfully worse than any of the other three models (i.e., it is always at or near
the bottom for each metric). Hence, we can conclude that our procedure of fitting
a data-determined fraction of players to the league mean does not cause us to miss
out on any signal in the metrics or falsely conclude that a metric is low signal.

This plot shows a further benefit as well. It shows that our model performs
about as well or better than the random effects and no pooling model for all metrics.
Not only does this provide validation for our model, but it also shows that we are
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not sacrificing predictive performance in order to gain the insight provided by the
model outputs p̂1 and r̂. That is, we pay no price for interpretability.

4.2 Comparison to the Lasso

The Lasso (Tibshirani (1996)) is a penalized least squares regression that uses an
L1 penalty on the estimated regression coefficients,

β̂
Lasso = argmin

β̂

[
∑
i, j

(yi j−Xiβ̂ )2 +λ ∑
i
|β̂i|

]
, λ ≥ 0. (7)

The Lasso enforces sparsity on the covariate space by forcing some coefficients to
zero and can therefore be used for variable selection. A more intuitive reformulation
of the Lasso is as a minimization of ∑i, j(yi j−Xiβ̂ )2 subject to ∑i |β̂i|

∑i |β̂ OLS
i |
≤ f , where

β̂ OLS
i is the coefficient from variable i in the ordinary least squares solution. The free

parameter f is known as the Lasso “fraction” because it is the ratio of the L1 sizes
of the Lasso solution and the OLS solution. Furthermore, f directly corresponds to
λ in Equation 7 and ranges between zero (corresponding to fitting only an overall
mean or λ = ∞ in Equation 7) and one (corresponding to the ordinary least squares
regression solution or λ = 0 in Equation 7).

We apply the Lasso to our problem by centering each offensive metric and
then fitting the regression model consisting only of indicators for each player. Each
component of the β̂ Lasso vector corresponds to the individual mean of a given player,
and we are interested in which of these individual means are fitted to be different
from zero. To select a value of the free parameter f , we implemented multiple five-
fold cross validation by randomly subdividing all player-seasons into five groups.
That is, we fix f and fit the Lasso on four of the groups and predict fifth group of
player-seasons, which has been held out-of-sample. We then repeat this four times,
holding each of the groups as out of sample and fitting on the other four. Finally,
we repeat this procedure ten times, yielding fifty out-of-sample RMSEs for a given
value of f . After conducting this procedure along a fine grid of possible f values
ranging between 0 and 1, we selected the f with the lowest cross-validated average
RMSE. We then fit the Lasso model to the full dataset using this value of f .

The outcome of interest from this Lasso regression is Lasso%, the percent-
age of players that are fitted with non-zero coefficients by the Lasso (i.e., the percent
of β̂ Lasso

i 6= 0). This measure represents a global measure of signal for each metric,
and thus serves as an alternative to our model-based measures of p̂1 and r̂. We com-
pare our model-based measures to the Lasso% measure in Figure 5. We begin with
the right plot which shows that r̂ and the Lasso% are highly correlated, both for the
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Figure 5: Left: Plot of p̂1 against the percentage of players with non-zero means se-
lected by the Lasso. Right: Plot of r̂ against the percentage of players with non-zero
means selected by the Lasso. The values plotted here can be found in Appendix B.

normal metrics in red and the skewed ones in black. Thus, there is a broad cor-
respondence between one measure of signal from our own model and the external
Lasso model’s measure of signal.

More interesting is the comparison of p̂1 and Lasso% presented in the left
plot of Figure 5. These two measures are intimately related as both attempt to esti-
mate the fraction of players who differ from the league mean. Consequently, we see
agreement between Lasso% and p̂1 for many measures, especially the red measures
that fit the normal model. These high signal measures with large p̂1 also tend to
have a large percentage of non-zero coefficients. The main difference between the
two methods is with the black metrics that have skewed (non-normal) data distri-
butions. These measures tend to have a high Lasso% but a low p̂1, meaning that
a Lasso-based analysis would attribute much more signal to these metrics than our
mixture model-based analysis. Neither our model nor the Lasso is meant for the
highly skewed data of these black metrics. The fact that the our model is more
cautious about these metrics than the Lasso suggests an advantage to our approach.

4.3 Principal Components Analysis

Among our metrics with a high p̂1 in Figure 2, there was a smooth distribution of r̂
with no clean breaks. Ideally, there would be a more stark divide in the performance
of these metrics, allowing us to focus on only a small subset of metrics as a complete
summary of offensive performance. However, this is a difficult task in large part
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Figure 6: Plot of the variance explained by each principal component. We create
a grey null band by randomly permuting the values within each column to demon-
strate the strong significance of our results. In addition, we demonstrate the vari-
ability in our own principal components by creating bootstrap samples of player-
seasons and calculating the variance of the bootstrap principal components in red.

because of the high correlation between many of these metrics (e.g., consider OPS
which is the sum of OBP and SLG). We performed a more systematic assessment
of the correlation between metrics using a Principal Components Analysis. PCA
projects the data onto an orthogonal space such that each orthogonal component
describes a decreasing amount of variance.

Note that one of our fifty metrics, SBPA, was not included in this analysis
due to a high number of player-seasons which had a denominator (SB+CS) equal
to zero. Furthermore, so we could include all metrics, we work with the reduced
set of 1,935 player-seasons which begin in 2002. The results from our principal
components analysis on the remaining forty-nine metrics are shown in Figure 6.
We see that among the forty-nine metrics represented in Figure 6, only about eight
principal components have variance exceeding the null bands, which suggests that
there are only about eight unique (orthogonal) metrics among the entire set of met-
rics. Furthermore, these eight principle components account for about 80% of the
total variance.

In Section 3.1, we identified a set of nine metrics as high signal metrics
and further reduced this to five (i.e., K/PA, BB/PA, SPD, ISO, and GB/BIP) due
to collinearity considerations. One wonders how will these five metrics explain the
other forty-nine given the results of the principal components analysis. Do they
account for a large fraction or a small fraction? One can assess this question by
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Figure 7: Left: Plot of p̂1 against R2. Right: Plot of r̂ against R2. R2 is calculated
from the regression of each metric on K/PA, BB/PA, SPD, ISO, and GB/BIP. The
values plotted here can be found in Appendix B.

regressing each of the forty-nine metrics on the five selected metrics and taking
one minus the sum of squares of the residuals divided by the sum of squares of the
forty-nine metrics. This corresponds exactly to the usual multivariate R2 calcula-
tion and to the fraction of variance explained in principal components analysis (in
particular, if we scale the forty-nine variables by their standard deviations before
regressing on the five selected variables it corresponds to principal components on
the correlation matrix; otherwise, it corresponds to principal components on the
covariance matrix). We find that our five selected metrics explain about 55% of
the total variance, quite favorable compared to the 80% explained by the first eight
principal components especially when one considers that our metrics are directly
interpretable unlike principal components.

More interesting is to discover which of the forty-nine metrics our set of
five (i.e., K/PA, BB/PA, SPD, ISO, and GB/BIP) can predict well and which ones it
cannot. We plot the R2 from the regression of each of the metrics on our five metrics
in Figure 7. There is not much relation between p̂1 and R2 but there is a strong cor-
relation between r̂ and R2, particular for the normally distributed metrics. Looking
more specifically at what metrics our five metrics can serve as surrogates for (i.e.,
provide a high R2 for), we see (in addition to the five metrics themselves) power
hitting metrics like SLG, HR/PA, HR/FB, HR, and OPS; plate discipline metrics
like BB, BB/K; hit location metrics like FB/BIP and GB/FB; and metrics which
relate to a player’s run contribution to his team like wRAA and wOBA. Further,
metrics which our five cannot predict are ones that seem to be largely unpredictable
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in the sense that they largely depend defensive players. Such metrics include hit by
pitch total (HBP) and rate (HBP/PA), sacrifice flies (SF), BABIP, and bunt hit rate
(BUH/H).

In sum, our set of fifty offensive metrics are highly correlated. However, the
set of five selected by our model provide a substantial reduction in the dimension-
ality. Managers can look at these five an obtain much of the information contained
in the full set of fifty.

5 Discussion
We have introduced a hierarchical Bayesian variable selection model, which allows
us to determine how well hitting metrics provide sound predictions across time and
players. Our model does not require adjustment for multiple testing across players
and imposes shrinkage of player-specific parameters towards the population mean.
For fifty different offensive metrics, the full posterior distributions of our model pa-
rameters are estimated with a Gibbs sampling implementation. We evaluate each of
these metrics with several proxies for reliability or consistency, such as the propor-
tion of players found to differ from the population mean ( p̂1) as well as the variation
in individual player performance relative to variation from season to season (r̂).

We identified five metrics which stand out has having high signal. Beyond
that, there is a continuum of metrics which all demonstrate high p̂1 but slightly
less r̂ (see Figure 2). That is, players do stand out from the league mean for these
metrics but the differences across players are less and less. The existence of this
slow tailing off in r̂ is largely a function of the high correlation among the set of
fifty metrics. Our principal components analysis suggests that only a small subset of
metrics are substantively different from one another and that our set of five accounts
for a substantial amount of this difference.

A direction of future research would be the creation of a reduced set of
consistent metrics that were less highly dependent but still directly interpretable.
Our sophisticated hierarchical model could be extended further to share informa-
tion between metrics instead of the separate metric-by-metric analysis that we have
performed. The relatively high correlation between some metrics could be used to
cluster metrics together and reduce dimensionality. This approach would have the
advantage of pooling across related measures and increasing effective degrees of
freedom.
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2. More Complicated Hitting Totals and Rates
Metric yi j Raw Weight ui j Description
OBP PA? on base percentage (OB/PA?)
AVG AB batting average (H/AB)
SLG AB slugging percentage
OPS AB × PA? OPB + SLG
ISO AB isolated power (SLG-AVG)
BB/K PA walk to strikeout ratio
HR/FB PA home run to fly ball ratio
GB/FB BIP ground ball to fly ball ratio
BABIP BIP batting average for balls in play
LD/BIP BIP line drive rate
GB/BIP BIP ground ball rate
FB/BIP BIP fly ball rate
IFFB/FB FB infield fly ball proportion
IFH GB in field hit
IFH/H GB in field hit proportion
wOBA PA? weighted on base average
wRC PA runs created based on wOBA
wRAA PA runs above average based on wOBA

3. Baserunning Totals and Rates
Metric yi j Raw Weight ui j Description Metric yi j Raw Weight ui j Description
SB OB stolen bases SB/OB OB stolen base rate
CS OB caught stealing CS/OB OB caught stealing rate
SBPA SB + CS stolen bases per attempt SPD PA Bill James’ speed metric

i.e., SB/(SB+CS)

A Offensive Measures
Our fifty offensive measures are subdivided into three categories for ease of presen-
tation. Terms that are not defined in this appendix are AB (at bats), BIP (balls in
play), OB (total number of times on base), PA (plate appearances), and PA? (plate
appearances minus sacrifice hits). As noted in the main text, the weights wi, j ac-
tually used in the analysis are a function of the raw weights ui, j. In particular, we
set wi j = ū/ui j for rates and wi j = ui j/ū for totals where ui j denotes the raw weight
function for player i in season j and ū represents the mean weight over all player-
seasons.

1. Simple Hitting Totals and Rates
Metric yi j Raw Weight ui j Description Metric yi j Raw Weight ui j Description
1B PA singles 1B/PA PA single rate
2B PA doubles 2B/PA PA double rate
3B PA triples 3B/PA PA triple rate
HR PA home runs HR/PA PA home run rate
R PA runs R/PA PA run rate
RBI PA runs batted in RBI/PA PA runs batted in rate
BB PA base on balls (walk) BB/PA PA walk rate
IBB PA intentional walk IBB/PA PA intentional walk rate
K PA strike outs K/PA PA strike out rate
HBP PA hit by pitch HBP/PA PA hit by pitch rate
BUH H bunt hits BUH/H H bunt hit proportion
H PA hits GDP PA ground into double play
SF PA sacrifice fly SH PA sacrifice hit
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B Model Statistics and Holdout RMSEs

Metric
Model Statistics Holdout RMSEs

p̂1 r̂ Lasso% R2 Mixture Random No Complete
Model Effects pooling pooling

1B 0.908 0.376 0.815 0.317 22.4 22.2 23.0 26.3
2B 0.910 0.353 0.817 0.285 9.65 9.68 9.71 11.4
3B 0.434 0.509 0.678 0.549 2.02 2.05 2.23 2.48
AVG 0.903 0.361 0.642 0.386 0.0249 0.0249 0.0270 0.0280
BABIP 0.969 0.345 0.680 0.119 0.0282 0.0283 0.0323 0.0306
BB 0.913 0.543 0.928 0.811 16.3 16.3 15.9 23.4
BB/K 0.687 0.686 0.945 0.855 0.182 0.18 0 0.18 0 0.301
BB/PA 0.977 0.642 0.900 1.000 2.07 2.06 2.09 3.38
BUH 0.163 0.940 0.950 0.307 1.78 1.74 1.87 2.81
BUH/H 0.943 0.213 0.511 0.086 23.2 23.1 24.2 24.8
CS 0.436 0.655 0.844 0.354 2.60 2.51 2.64 3.24
FB/BIP 0.937 0.720 0.896 0.812 3.89 3.88 3.99 6.70
GB/FB 0.721 0.816 0.925 0.876 0.257 0.251 0.251 0.467
GB/BIP 0.952 0.749 0.903 1.000 3.74 3.75 3.67 6.61
GDP 0.976 0.347 0.756 0.217 4.97 4.98 5.09 5.94
H 0.972 0.333 0.836 0.332 34.3 34.3 35.2 39.9
HBP 0.334 0.801 0.881 0.044 3.09 3.00 3.21 4.16
HR 0.987 0.565 0.929 0.833 6.80 6.78 6.62 10.6
HR/FB 0.967 0.695 0.889 0.914 3.49 3.50 3.61 5.76
IBB 0.295 0.610 0.877 0.387 3.67 3.67 3.64 4.75
IFFB/FB 0.913 0.548 0.725 0.083 3.61 3.61 3.71 4.43
IFH 0.740 0.572 0.773 0.364 4.59 4.55 5.02 5.64
IFH/H 0.930 0.448 0.720 0.195 2.22 2.22 2.53 2.57
ISO 0.990 0.638 0.935 1.000 0.0373 0.0373 0.0377 0.0594
K/PA 0.982 0.810 0.950 1.000 3.09 3.10 3.08 6.60
LD/BIP 0.615 0.287 0.335 0.080 2.66 2.67 2.77 2.89
OBP 0.932 0.487 0.810 0.692 0.0268 0.0269 0.0283 0.0338
OPS 0.930 0.512 0.842 0.828 0.0748 0.0750 0.0798 0.0939
R 0.961 0.384 0.879 0.516 21.9 22.0 22.4 25.6
RBI 0.984 0.461 0.916 0.576 21.4 21.5 21.6 28.1
SB 0.295 0.840 0.960 0.640 7.24 6.92 7.00 11.0
SF 0.837 0.190 0.516 0.130 2.40 2.40 2.55 2.47
SH 0.987 0.543 0.876 0.317 2.20 2.21 2.32 2.85
SLG 0.968 0.530 0.861 0.908 0.0526 0.0527 0.0555 0.0696
K 0.975 0.631 0.895 0.647 24.8 24.7 24.1 37.9
SPD 0.990 0.660 0.911 1.000 1.17 1.17 1.21 1.71
wOBA 0.944 0.486 0.832 0.776 0.0289 0.0290 0.0306 0.0363
wRAA 0.815 0.467 0.851 0.771 12.8 12.8 13.0 16.8
wRC 0.926 0.420 0.918 0.615 23.2 23.2 22.8 29.6
1B/PA 0.988 0.561 0.834 0.586 0.0207 0.0208 0.0212 0.0305
2B/PA 0.966 0.350 0.711 0.199 0.0115 0.0114 0.0122 0.0131
3B/PA 0.779 0.369 0.663 0.541 0.00341 0.00344 0.00391 0.00428
HR/PA 0.994 0.655 0.930 0.943 0.00964 0.00963 0.00977 0.0158
R/PA 0.953 0.437 0.792 0.628 0.0211 0.0213 0.0228 0.0235
RBI/PA 0.992 0.592 0.881 0.718 0.0235 0.0234 0.0247 0.0323
IBB/PA 0.471 0.507 0.867 0.354 0.00616 0.00614 0.00650 0.00780
HDP/PA 0.367 0.810 0.857 0.024 0.00560 0.00543 0.00596 0.00744
SB/OB 0.344 0.899 0.957 0.690 0.0351 0.0343 0.0342 0.0579
CS/OB 0.724 0.629 0.837 0.352 0.0133 0.0130 0.0135 0.0189
SBPA 0.987 0.375 0.479 0.271 0.258 0.259 0.279 0.272
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