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Planning Sample Sizes When Effect Sizes Are Uncertain:
The Power-Calibrated Effect Size Approach

Blakeley B. McShane and Ulf Bockenholt

Northwestern University

Statistical power and thus the sample size required to achieve some desired level of power depend on the
size of the effect of interest. However, effect sizes are seldom known exactly in psychological research.
Instead, researchers often possess an estimate of an effect size as well as a measure of its uncertainty (e.g.,
a standard error or confidence interval). Previous proposals for planning sample sizes either ignore this
uncertainty thereby resulting in sample sizes that are too small and thus power that is lower than the
desired level or overstate the impact of this uncertainty thereby resulting in sample sizes that are too large
and thus power that is higher than the desired level. We propose a power-calibrated effect size (PCES)
approach to sample size planning that accounts for the uncertainty associated with an effect size estimate
in a properly calibrated manner: sample sizes determined on the basis of the PCES are neither too small
nor too large and thus provide the desired level of power. We derive the PCES for comparisons of
independent and dependent means, comparisons of independent and dependent proportions, and tests of
correlation coefficients. We also provide a tutorial on setting sample sizes for a replication study using
data from prior studies and discuss an easy-to-use website and code that implement our PCES approach
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Recent difficulties in replicating prior results (Brodeur, Le,
Sangnier, & Zylberberg, 2012; Francis, 2013; loannidis, 2005;
Yong, 2012) have led to an increased interest in replication,
study-planning, and research practices (Asendorpf et al., 2013;
Brandt et al., 2014; Pashler & Wagenmakers, 2012). A particular
area of focus has been on sample size considerations. Textbooks
recommend setting sample sizes to achieve some prespecified
level of power (typically 80%; Cohen, 1992). However, this rec-
ommendation can be difficult to implement in practice because
“we never know true power . . . because we do not know the true
effect size” (Cumming, 2014). This is true even for replication
studies because prior data can at best provide an estimate of the
effect size as well as an estimate of its error.

How should researchers attempting replication determine sample
sizes in this setting, namely when they possess an estimate of the
effect size as well as a measure of its uncertainty (e.g., a standard error
or confidence interval)? We propose a power-calibrated effect size
(PCES) approach to sample size planning that accounts for the un-
certainty associated with estimates of effect sizes and yields sample
sizes that reflect this uncertainty while providing the desired level of
power. The PCES approach is based on the notion of expected power
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according to which power, when averaged over all possible effect
sizes, is set to the desired level (e.g., 80%).

The PCES approach to sample size planning is attractive compared
to alternative approaches because it accounts for uncertainty in a
principled manner, that is, it is properly calibrated so that sample sizes
determined using the PCES approach provide the desired level of
power on average. Consequently, researchers who use the PCES
approach are less likely to waste resources by setting sample sizes
either too small or too large and thus having lower or higher than the
desired level of power respectively. Because the PCES approach is
properly calibrated, sample sizes based on it can be substantially
smaller than those derived from alternative approaches that attempt to
account for uncertainty.

Another principal benefit of the PCES approach is that it is easy
to implement. The only modification to current practice required is
that researchers must first compute the PCES; they may then
continue using whatever techniques for sample size planning they
currently use (e.g., textbook sample size formulae or statistical
software). To facilitate this, we have developed an easy-to-use
website that implements the PCES approach; the principal R (R
Core Team, 2012) code underlying the website as well as R code
to replicate analyses conducted in this paper are available both in
the online supplementary materials and at the website and can be
used without recourse to it. Because the PCES approach requires
only a minor modification of current practice, it can be readily
adopted by researchers interested in conducting studies that are
adequately powered even when an effect size cannot be specified
with a high level of accuracy.

In the remainder of this paper, we discuss the notion of expected
power and derive the PCES. We show that the PCES properly
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Table 1
Textbook Sample Size Formulae for Common Tests

Test General One-sided (e = 0.05, B = 0.20) Two-sided (e = 0.05, B = 0.20)
Comparison of two independent 2027y — 19)2 12.37¢° 15.70¢°
means A2 A? A?
Comparison of two dependent OB(@1-a — ZE)Z 6.180% 7.850%

means A2 A2 A2

Comparison of two independent 2p(1 =p)zi o= ZE)Z 12.37p(1=p) = 3.09 15.70p(1 = p) = 392

proportions A? A? TN A? oA
Comparison of two dependent @10 = %) (o1 +p10) 6.18(poi + P10 7.85(po1 + p1o)
proportions (Por = P10’ (Por = P1o)’ (Por = P10’
1.55 1.96

B (z-a—zp)’ - 15 =

) 4(ﬁ - %)2(1701 + Pio) (ij B %)Z(POI +pi0) ([5 - %)2(1701 +P10)

L
Test of a correlation coefficient M + 3 % +3 7'825 +3
z Z, Z

Note. The formulae give the sample size per condition for between-subjects designs and the total sample size for within-subjects designs and correlations. The
null hypothesis is that of no difference or no correlation respectively. For two-sided tests, use z;_, in place of z;_, where z, is the 100y percentile of the standard
normal distribution. In the table, A is the researcher’s point estimate of the difference in means or proportions between the conditions, p is the researcher’s point
estimate of the average proportion between the conditions (i.e., p = (p; + p,)/2where p; is the researcher’s point estimate of the proportion in condition i), j is
the researcher’s point estimate of the change proportion (i.e., p = pyo/(po1 + p1o) Where p;; is the researcher’s point estimate of the proportion who selected i then
7 Z, is the Fisher Z-transformation of the researcher’s point estimate of the correlation coefficient (ie., Z, = %log(}—tg) = arctanh (p)), o” is the variance of the
individual-level observations, and o3 is the variance of the individual-level differences. Our formulae assume without loss of generality that A and (p' - %) are

positive; if Z, is negative use |Zp| in place of it. The formulae appear in Hays (1963) and similar textbooks.

calibrates power to the desired level while alternative approaches
yield power that is lower or higher than the desired level. We then
provide a tutorial on setting sample sizes for a replication study
using data from prior studies. Next, we discuss our website and
code, show how to use the website to reproduce the replication
study results, and provide some additional examples. Finally, we
conclude with recommendations.

Expected Power and the PCES

In this section, we show how to account for the uncertainty
associated with estimates of effect sizes. Previous proposals in the
literature either ignore this uncertainty or overstate its impact. Our
approach calibrates the effect size in a manner that reflects this
uncertainty and provides the desired level of power on average.

Consider a researcher who is interested in some parameter 6. In
particular, suppose the researcher wants to test the null hypothesis
H, : 6 = 0 versus the alternative hypothesis H, : 6 > 0 (or more
generally H, 6 € O, versus the alternative hypothesis
H,;:6€0, = 0f for 6€ ® = O UO)). The researcher selects a
hypothesis test, which is typically specified in terms of (a) a test
statistic T(X|, . . ., X,) = T(X) that is some function of the n
sample data points and (b) a critical (or rejection) region R. The
critical region R is typically selected so that, if the null hypothesis
H, is true, the probability the test statistic T(X) lies in the critical
region R is no more than a, the size of the test (i.e., the maximum
probability of a Type I error or the minimum significance level).
The null hypothesis H,, is rejected when the test statistic T(X) lies in
the critical region R. For example, a researcher may be interested in
testing whether v, the mean of n independent and identically distrib-

uted normal random variables with known variance o2, is less than
or equal to zero versus greater than zero (i.e., Hy : p = 0 versus
H, : > 0) at o« = 0.05. In this case, the researcher might specify
T(X) = X/(6°/Vn) (i.e., the sample mean of the data divided by its
standard error) as the test statistic and T(X) = 1.64 as the critical
region; if the null hypothesis is true, there is at most a 0.05 probability
that T(X) = 1.64.

Power is the probability that the random variable T(X) lies in the
critical region when the null hypothesis H,, is false; thus, power is
the probability of correctly rejecting the null hypothesis. The
sampling distribution of T(X) and thus power typically depend on
both 6 and n while the critical region depends on « and can depend
on n. If we write the probability density function of the sampling
distribution of T(X) as f(x10, n) and the critical region as R, ,,
then power P(0, n, o) is defined as

P(0, n, &) = P(T(X) ER,,) = f Fo(x10, dx (1)

xT(X)ER ,

where the integral is taken over the set of points x in the sample
space of X such that the test statistic T(X) lies in the critical region
Ry
Best practices dictate setting the sample size n to achieve
adequate power where 80% is typically deemed adequate (Cohen,
1992). Thus, conditional on the parameter value 6 and the size of
the test a (typically o = 0.05), researchers use Equation 1 to find
the smallest n that yields the desired level of power 1 — 3 (typically
B = 0.20 so that power is 80%). In practice, this is typically
accomplished either through textbook sample size formulae (e.g.,
those in Table 1) or statistical software (e.g., G*Power (Faul,
Erdfelder, Lang, & Buchner, 2007), R, SAS, SPSS, or Stata):
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researchers plug the parameter value 0, the size of the test o, and
the desired level of power into textbook formulae or software and
obtain the sample size that yields the desired level of power.

This approach suffers from a serious limitation: it requires
researchers to know 6, which they of course do not (otherwise they
would not need to collect data in the first place). However, in
replication studies, researchers can use data from prior studies to
form beliefs about (or estimate) 6. These beliefs can often, at least
loosely, be characterized as a probability density function w(81D)
where conditioning on D makes explicit the role of data D from
prior studies. Using m(01D), researchers then typically select a
plausible value 6 for 6 and use this in conjunction with textbook
formulae or software (i.e., as discussed in the prior paragraph).

A popular approach, which we term the point estimate approach,
is to select as 0 the mean, E[6] = Jo 0(0 | D) d6. While this seems
like a reasonable value, in practice it typically results in power that
is below the desired level on average. To understand this,
consider the left panel of Figure 1, which illustrates the well-
known fact that the secant line of a concave function lies below the
graph of the function; since the secant line is a weighted average of
the concave function we(x;) + (1 — w)e(x,) and the graph is the
concave function of the weighted average (wx; + (1 — w)x,), we
have wo(x;)) + (1 — welx) = ewx; + (I — w)x,). Jensen’s
inequality (Jensen, 1906) generalizes this fact to an arbitrary weighted
average of an arbitrary number of points: if X is a random variable and
@ is a concave function, then E[¢(X)] = o(E[X]). Power P(0, n, o) is
concave at least locally at sufficiently high values (i.e., those that
are desirable in practice) because it asymptotes to one as a function of
the sample size. Consequently, Jensen’s inequality implies
E[P(B, n, «)] = P(E[6], n, @) as illustrated in the right panel of Figure
1. In sum, even if mw(01D), the researcher’s beliefs about 6 based on
prior data, is on average centered around the true value, the point
estimate approach results in sample sizes that are too small and thus
power that is below the desired level on average; this effect can be
substantial in practice.

0 0(x2) (%)

Muxt (1-w))

() + (1-w) o)

o(x)

X

(a) Concave Function and Secant Line

The shortcoming of the point estimate approach derives from the
fact that it ignores the uncertainty about 6 implied by w(01D): it treats
0 as if it were known to be its mean. The safeguard power approach
(Perugini, Gallucci, & Costantini, 2014) was developed to overcome
this shortcoming. It recognizes the uncertainty implied by m(61D) and
tries to account for it by choosing 6 = Q(p) where Q is the quantile
function corresponding to 7 and p is relatively small. Perugini et al.
(2014) recommend p = 0.20 (i.e., the twentieth percentile), so that
80% of the time 6 will be larger than 6. While the safeguard power
approach is an improvement over the point estimate approach in that
it recognizes the uncertainty about 6 implied by m(61D), it suffers
from one major shortcoming: it does not properly calibrate power. In
fact, the safeguard power approach is typically quite pessimis-
tic: 6 = Q(0.20) is too small resulting in sample sizes that are too
large and power that is above, often substantially, the desired level
(see Figure 1 of Perugini et al., 2014).

The limitation of each of these approaches is not in picking a
value 0 for 0 per se but rather in picking that value indiscriminately
(i.e., always picking the mean in the case of the point estimate
approach and always picking the twentieth percentile in the case of
the safeguard power approach). Given that w(01D) implies that
some values of 6 are relatively more likely while other values are
relatively less likely, power should be calculated (and thus sample
sizes set) in a manner that respects this variation in likelihood. This
is known as the expected power approach to power calculation
(Gillett, 1994; O’Hagan, Stevens, & Campbell, 2005; Spiegelhal-
ter, Abrams, & Myles, 2004) and expected power EP(m, n, o) is
defined as

EP(, n, o) = f@ P(0, n, a)m(01D)do. 2)

Thus, expected power is a weighted average of power P(6, n, o)
where the weights correspond to the researcher’s beliefs w(01D).

When 6 is known, w(01D) is a probability mass function that
puts probability one on the known value of 6 and probability zero

P(E [6] n, &)

E [P(6,n, 0)]

Power

0

(b) Power and Expected Power

Figure 1. Jensen’s inequality and power. The left panel illustrates that the secant line of a concave function lies
below the graph of the function, we(x;) + (1 — w)e(x,) = @(wx; + (1 — w)x,). Jensen’s inequality generalizes
this statement: if X is a random variable and ¢ is a concave function, then E[@(X)] = ¢(E[X]). The right panel
illustrates the implications of Jensen’s inequality for power, namely that E[P(0, n, )] = P(E[6], n, ) so that
assessments of power based on the mean of 6 are on average too high. In the plot, E appears as E because our

plotting software lacks the facility to produce E.
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on all other values; consequently, EP(, n, a) = P(0, n, ). This
is how the point estimate and safeguard power approaches func-
tion: they replace (6 1D) with a probability mass of one at 6 (i.e.,
the mean and twentieth percentile respectively). As discussed, this
does not generally lead to the desired level of power on average.
To obtain the desired level of power on average, it is instead
necessary to choose @ such that P(8, n*, ) = EP*(w, n*, o) where
EP* is the desired level of power on average and n* is the sample
size requisite to obtain it. We refer to @ chosen in this manner as
the PCES and note, when the PCES is used in conjunction with
textbook formulae or software, power is set to the desired level on
average. Our proposed PCES is novel in that it is the unique effect
size that accounts for the uncertainty about 6 implied by w(81D) in
a properly calibrated manner: sample sizes based on the PCES
used in conjunction with textbook formulae or software provide
the desired level of power on average.

We present an approach for analytically deriving the PCES in
the appendix. Our approach is quite general and holds for a wide
variety of cases. Using our analytic strategy, we derive PCES
formulae for the statistical tests most often used in psychology
(e.g., comparisons of independent and dependent means, compar-
isons of independent and dependent proportions, and tests of
correlation coefficients) and present them in Table 2. To use these
formulae, researchers need only a point estimate (also required by
both the point estimate and safeguard power approaches) as well as
an estimate of its error (also required by the safeguard power
approach); thus, our approach requires no more information than
comparable proposals in the literature while yielding better (i.e.,
calibrated) performance. Our formulae can be used to improve
sample size planning as discussed above and as illustrated in the
next section.

In addition to aiding in sample size planning, the PCES also
provides intuition about the importance of uncertainty in a given
example. For example, consider a researcher interested in a one-
sided test of Hy : 6 = 0 versus H; : 6 > 0 at « = 0.05 with 80%
as the desired level of power (i.e., 3 = 0.20). In this case, the

PCES is of the form 6 = 2.056 — 1.05V 6>+ 2.00v" (see the
middle column of Table 2) where (a) 6 denotes the point estimate
of the parameter and (b) v denotes the uncertainty in that point
estimate.

We illustrate in Figure 2 the relationship between 0, the point
estimate, and 6 , the value to be used in conjunction with textbook
formulae or software, for various values of v, the uncertainty in the
point estimate; we do so for (a) the point estimate approach, (b) the
safeguard power approach, and (c) the PCES approach. The plot
shows that 0 is equal to the point estimate  for the point estimate
approach; this is unsurprising since this approach ignores uncer-
tainty v. In contrast, § is equal to the point estimate 0 plus a
downward adjustment for both the safeguard power and PCES
approaches. In both cases, the downward adjustment is larger
when the uncertainty v is larger; however, the downward adjust-
ment for the safeguard power approach is constant given v while
the downward adjustment for the PCES is smaller the larger is the
point estimate 6. Thus, importantly, the PCES approach accounts
for the size of both the point estimate 6 and uncertainty v. In
particular, the PCES 6 is a roughly linear function of the point
estimate 0 when the point estimate is large relative to uncertainty
v (and indeed the PCES is 6 for sufficiently large 0); in contrast,

when uncertainty v is large relative to the point estimate 6—the
setting where accounting for uncertainty is most important for
power—there is substantial nonlinearity, and the PCES 6 can be
quite a bit smaller than the point estimate 6.

Figure 2 illustrates another important phenomenon, namely for
v sufficiently large relative to 6 the PCES 6 either does not exist
or differs in sign with the point estimate. In such cases, the PCES
is omitted from the plot, is not meaningful, and should not be used.
Fortunately, these cases are easy to characterize. First, the PCES
will not exist if the term under the square root sign is negative; this
will not occur provided a < 3, so we recommend restricting to
tests with a < . Second, the PCES will be of the wrong sign
when uncertainty is sufficiently large relative to the point estimate
that the desired level of expected power is simply not possible

(e.g., 6 = 2.056 — 1.05V6%+2.00v> will differ in sign from 6

when 6 = % V% + 2.00v2); if we assume, as should almost always

be the case in practice, that o < 0.50 (i.e., so that Type I error is less
than 50%) and B < 0.50 (i.e., so that power is greater than 50%), the
PCES will be of the correct sign provided v < 0/lzgl. In sum, we
recommend setting o < 0.50, B < 0.50, and o < {3; in this case, the
PCES will exist and be of the proper sign provided
v < 0/lzpl, and thus our PCES approach can be used.

Application to Choice Overload

In this section, we provide a tutorial on the sample size meth-
odologies discussed above in the context of replication studies. We
assume the researcher is interested in replicating the choice over-
load effect (i.e., that an increase in the number of options from
which to choose can lead to adverse consequences such as a
decrease in the likelihood of making a choice or the satisfaction
with a choice; Iyengar & Lepper, 2000) and wishes to conduct a
two-condition between-subjects study with equal sample size n in
each condition. We also assume the researcher wants to set the
sample size to achieve 80% power for a comparison of two

independent means using a one-sided test at « = 0.05; in this case,

2
the textbook sample size formula is n = 12370 subjects per

condition (see Hays, 1963 and Table 1) where A is the difference
in the means between the conditions and o is the standard devia-
tion of the individual-level observations, and the PCES formula is
A = 2.05A — 1.05V A?+2.00v* (see Table 2) where v is the
uncertainty in A. We discuss in turn (a) data collection, (b) setting
sample sizes when one prior study is available, and (c) setting
sample sizes when multiple prior studies are available.

We note that here and throughout we present two digits after the
decimal point for noninteger real numbers and zero digits for
integers unless otherwise noted. All calculations, however, are
based on unrounded numbers. Consequently, calculations based on
the rounded numbers presented in the text may not match exactly.

Data Collection

In Table 3, we present data from three studies of the choice
overload effect. The study design for each was a two-condition
between-subjects study that measured satisfaction as a dependent
variable. For the first study (Iyengar & Lepper, 2000; Study 2), the
means and standard deviations in the table match those reported in
the paper while the sample sizes in the table are the number of
subjects that completed the assignment (i.e., the sample sizes
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Figure 2. 0 versus 0. We assume a one-sided test at « = 0.05 with 80% as the desired level of power.

reported in the paper multiplied by the completion rate reported in
the paper). For the second study (Fasolo, Carmeci, & Misuraca,
2009; Study 1), the means, standard deviations, and sample sizes
match those reported in the paper. For the third study (Diehl &
Poynor, 2010; Study 2), the means and sample sizes in the table
match those reported in the paper while the standard deviations
in the table were determined from the means and sample sizes
as well as the F-statistic of 4.18 reported in the paper
( 781740 = 1.29). The first study measured satisfaction on

\/4.18(1/78 + 1/87)

a 10-point scale, the second on a 9-point scale, and the third on a
5-point scale.

We chose these studies because they were highly suitable for
illustration purposes: (a) they reported the data cleanly and clearly, (b)
they followed the same study design, (c) they measured the same
dependent variable, and (d) they used a very similar measurement
scale for the dependent variable. We also note that the only distinction
relevant for the sample size planning is whether there is one prior
study or multiple (i.e., more than one) prior studies in the domain; as
shown below, the inputs for the sample size and PCES formulae are
based on the data from the single study in the former case and a
meta-analysis (Borenstein, Hedges, Higgins, & Rothstein, 2009; Coo-
per & Hedges, 1994; Cooper, Hedges, & Valentine, 2009; Hedges &
Olkin, 1985; Hunter & Schmidt, 1990) of the data from the set of
studies in the latter case.

One Prior Study

We show how to use the sample size and PCES formulae in the
context of one prior study, which we take to be the first study
(Iyengar & Lepper, 2000; Study 2). The formulae require three
inputs in total (i.e., A and o for the sample size formula and A and
v for the PCES formula), and we show how to obtain them from
the data.

Table 3
Choice Overload Data

With a single study, A can be set to the observed difference in the
means (8.09 — 7.69 = 0.40) while o can be set to the pooled standard

. (52— 1)1.05+ (74— 1)0.82> _ ) N
deviation (\/ =TT = 0.92). The uncertainty in the

difference in the means v can be set to the standard error of the

observed difference in the means ( 0‘5922 "+ 0‘7 422 = 0.17). We note
that all three of these values can be easily obtained with standard
statistical software.

The point estimate approach ignores uncertainty in A and uses

the point estimate of A in conjunction with the sample size formula
12.3702

Thus, the sample size suggested by the point estimate

AT
. 12.37.0.92% . ..
approach is YT 66 subjects per condition.

The safeguard power approach accounts for uncertainty in A by
using the twentieth percentile A + zy,;v = 0.40 — 0.84 - 0.17 =

0.26 in conjunction with the sample size formula. Thus, the sample

size suggested by the safeguard power approach is 1237092 _

156 subjects per condition. 02
Finally, the PCES approach accounts for uncertainty in a man-
ner that provides the desired level of power on average. The
PCES is 2.05A — 1.05VA2+200% = 205-040 -
1.05V0.40% +2.00-0.17% = 0.33. Thus, the sample size suggested

by the PCES approach is %;)2'922 = 95 subjects per condition.
The PCES approach yields the desired level of power on average
and strikes a balance between the point estimate approach that uses
too few subjects and thus has too little power on average and the
safeguard power approach that uses too many subjects and thus has
too much power on average.

We note that here and below we first determined the appropriate
effect size (i.e., 0.40 for the point estimate approach, 0.26 for the
safeguard power approach, and 0.33 for the PCES approach) and
then used it in conjunction with the sample size formula. An
alternative approach for those who use statistical software for

Small choice set

Large choice set

Article Study Mean SD n Mean SD n
Iyengar and Lepper (2000) Study 2 8.09 1.05 52 7.69 0.82 74
Fasolo et al. (2009) Study 1 3.81 0.54 32 3.78 0.55 32
Diehl and Poynor (2010) Study 2 7.81 1.29 78 7.40 1.29 87

Note. The study column indicates the study number in the article.
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Figure 3. Screenshot of G"Power using the standardized power-calibrated effect size.

sample size planning would be to first determine the appropriate
effect size and then use it with the relevant software instead of the
formula; we provide an example of how to do this for the PCES
approach using G"Power in Figure 3, noting that G*Power requires
the use of the standardized (rather than unstandardized) effect size
Alo = 0.33/0.92 = 0.3610 (we present four digits for greater
precision). A third possibility that we discuss in detail below is to
use our website or code.

Multiple Prior Studies

We show how to use the sample size and PCES formulae in the
context of multiple prior studies, which we take to be the three
studies reported in Table 3. The formulae require the same three
inputs as in the case of one prior study, and we show how to obtain
them from a meta-analysis of the data.

To obtain the three inputs, we conducted a meta-analysis using the
metafor package (Viechtbauer, 2010) in R (for code to replicate this
meta-analysis see the online supplementary materials or our website).
The meta-analysis yielded an effect size estimate of 0.31 with a
standard error of 0.11, which we can use for A and v respectively.' As
the meta-analysis was conducted on the standardized mean difference
scale, o can be set to one.

The point estimate approach thus suggests a sample size of

—12‘37‘11 00 = 131 subjects per condition. The safeguard power approach

uses (5.31 —0.84 - 0.11 = 0.22 as the effect size and thus suggests a

sample size of %2]2002 = 262 subjects per condition. Finally, the PCES

i$2.05-0.31 — 1.05V0.31242.00-0.11% = 0.27, and thus the PCES

approach suggests a sample size of %’7'2'002 = 169 subjects per

condition. Again, the PCES approach yields the desired level of
power on average and strikes a balance between the point estimate
approach that uses too few subjects and thus has too little power on
average and the safeguard power approach that uses too many
subjects and thus has too much power on average.

! A random effects meta-analysis estimated by metafor using restricted
(or residual or reduced) maximum likelihood (REML; Harville, 1977)
estimated heterogeneity at zero, so we used a fixed effects meta-analysis.
Given the paucity of studies in the meta-analysis, an estimate of zero
heterogeneity is not necessarily surprising, and Bayesian approaches that
bound the estimate away from zero can prove helpful (Chung, Rabe-
Hesketh, Dorie, Gelman, & Liu, 2013; Gelman, 2006). To account for
heterogeneity (McShane & Bockenholt, 2014) as well as uncertainty in
sample size planning, researchers can use as uncertainty v the square root
of the sum of (a) heterogeneity (represented as a variance) and (b) the
variance of the effect size estimate (i.e., the square of the standard error).
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We note that the sample size requisite to obtain the desired level
of power based on the meta-analysis is larger than that based on
the first study for all three approaches. This occurs because, while
the meta-analysis reduced uncertainty (v/o = 0.18 for the first
study versus v/o = 0.11 for the meta-analysis when the point
estimate is presented on the standardized scale), it also reduced the
point estimate (A/o = 0.36 for the first study versus A/o = 0.31
for the meta-analysis when the point estimate is presented on the
standardized scale). This latter effect dominates in this example
thereby leading to the larger sample size.

Exploring the Effect of Uncertainty

We explore how the sample size requisite for 80% power and
the expected power vary for different values of uncertainty v in
Figure 4 assuming the effect size is centered on the value given by the
meta-analysis of the choice overload data discussed above; the points
in the figure denote the value of v obtained from the meta-analysis. As
can be seen, when v is near zero (i.e., the researcher is relatively
certain in the effect size A), all three approaches converge: they
call for the same sample size and provide the desired level of
power. As v grows, however, each of the three approaches behaves
quite differently.

The point estimate approach calls for the same sample size
regardless of the value of v. This is because this approach does not
account for uncertainty. As a consequence, the expected power
drops below the desired level when v is greater than zero.

On the other hand, the safeguard power approach calls for a
sample size that grows along with v: more subjects are requisite
when there is greater uncertainty about the underlying effect size.
However, because this approach rather pessimistically assumes an
effect size that is at the twentieth percentile, the sample size grows
quite sharply and might be considered untenable even for rela-
tively modest values of v. Further, because of the large sample
size, the expected power is above the desired level when v is
greater than zero. We also observe that the expected power is
non-monotone in v; this is due to the difference in variance

800 -

between the null and alternative hypotheses in the expected power
setup (see Appendix A and, in particular, the discussion surround-
ing Equation 4).

Finally, our PCES approach, which accounts for uncertainty in
a manner that yields the desired level of power on average, appears
to strike a nice balance between the other two approaches. Like the
safeguard power approach, the PCES approach requires a larger
sample size when uncertainty is larger. However, the penalty is not
nearly as dramatic, and the sample size remains reasonable even
for relatively large values of v. Further, expected power is properly
calibrated at the desired level.

Facilitating the PCES

In this section, we discuss an easy-to-use website that imple-
ments the PCES approach to sample size planning, and we repro-
duce the choice overload results in the context of this website. We
also discuss the principal code underlying the website. Finally, we
provide several additional examples.

Website and Code

To facilitate sample size planning in the face of uncertainty in a
manner that properly calibrates power, we have created an easy-
to-use website that implements our PCES and sample size formu-
lae for the cases outlined in Table 2. The website is available at
https://blakemcshane.shinyapps.io/pces/, and it contains a tutorial
that explains how to reproduce the choice overload results con-
tained in this paper. By following the tutorial as well as the
additional instructional material on the website, researchers should
easily be able to account for uncertainty in their own sample size
determinations.

To reproduce the choice overload results in the context of the
website, a researcher must first select the parameters for the
sample size analysis; in this case, the researcher wants to (a)
compare two independent means using (b) a one-sided test (c) at
o = 0.05 (d) with 80% as the desired level of power (all four of

o
Qo '.\
S e
&
° 0.85- IS
& 600 -
o 5
5 2
© 80.80 -
2 400 = i
L 3 kel B - ¢
3 Qo S Point Estimate
g 80.75- AN —— Safeguard Power
['4 o T
8 it . — PCES
N 200 - ~
»n =
2 - 070~ ~.
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:
» 0- =
1 1 1 1 1 1 1 1
000 005 010 015 020 000 005 010 015 020

Figure 4. Sample size per condition requisite for 80% power and expected power. We assume a
comparison of two independent means using a one-sided test at a = 0.05 with 80% as the desired level of
power and assume the effect size is centered around A = 0.31 as per the meta-analysis of the choice
overload data with the uncertainty v given on the x-axis. We also assume o = 1 as per the meta-analysis.
The points represent the sample size per condition requisite for 80% power and the expected power for each
approach at the v obtained from the meta-analysis (i.e., v = 0.11). The various approaches lead to quite
different sample sizes even for relatively modest values of uncertainty v. The expected power for the point
estimate and safeguard power approaches can deviate substantially from the desired level of 80%.
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these parameters can be adjusted on the website). Next, the re-
searcher provides the three inputs A, o2, and v, which are 0.4000,
0.92% = 0.8493, and 0.17* = 0.0278 respectively when there is one
prior study and 0.3081, 1.0000, and 0.11* = 0.0116 respectively
when there are multiple prior studies (we present four digits to
facilitate exact replication of the results reported in the prior
section). Finally, the website returns the output displayed in Figure
5. The first column returns the effect size and sample size that do
not account for uncertainty (i.e., the point estimate approach) while
the second column returns the PCES and sample size that account
for uncertainty.

To further facilitate the PCES approach, we have provided both in
the online supplementary materials and on the website the principal
code that underlies the website as well as code to replicate the choice
overload results. The code provides a detailed set of variable defini-
tions. It also implements the textbook sample size formulae reported
in Table 1, the PCES formulae reported in Table 2, and power-
calibrated sample size formulae. It further shows how to replicate the
website defaults thereby illustrating how to use the code. Finally, it
shows how to replicate the choice overload results.

We believe these resources will allow researchers to easily
account for uncertainty in their own sample size determinations.

Additional Examples

The choice overload example was an in-depth example of a
comparison of two independent means resulting from a between-
subjects study with a continuous dependent variable. In this sec-
tion, we provide brief examples for the four other cases considered

Effect Size and Sample Size
Standard PCES
Effect Size (Delta) 0.4000 0.3327
Variance (sigma2) 0.8493 0.8493

Sample Size 66.0000 95.0000

in Tables 1-2 again assuming a one-sided test at « = 0.05 with
80% as the desired level of power.

Comparison of two dependent means. A comparison of two
dependent means resulting from a within-subjects study with a

continuous dependent variable is very similar to a comparison of
6.180%

v
where o, is the standard deviation of the individual-level differ-
ence scores, and the PCES formula is again 2.05A —
1.05V A%+ 2.00v%. Assuming a prior study (or a meta-analysis of
several prior studies) yields a point estimate A = 0.20, standard
deviation o, = 1, and standard error (of A) v = 0.10, the PCES

is 2.05-0.20 — 1.05V0.20%>+2.00-0.10> = 0.15, and the PCES

. 2 . .
approach suggests a sample size of % = 265 subjects in total.

We note that, for those seeking to obtain these three inputs,
meta-analysis can accommodate a set of prior studies that includes
both between-subjects and within-subjects designs (Gibbons,
Hedeker, & David, 1993).

Comparison of two independent proportions. A compari-
son of two independent proportions resulting from a between-
subjects study with a binary dependent variable also requires three
inputs: p; and p, (where p; is the proportion in condition i) as well
as v. The textbook sample size formula is w where p =
(py + p))/2 and the PCES formula is again 2.05A —
1.05V A% +2.00v* where A = p, — p,. Assuming a prior study (or
a meta-analysis of several prior studies) yields a point estimate
p; = 0.40 and p, = 0.60 (so that p = 0.50 and A = 0.20) and
standard error (of A) v = 0.10, the PCES is 2.05-0.20 —

two independent means. The textbook sample size formula is

The sample size provided is the sample size per condition requisite for the desired level of power for comparisons of
independent means and proportions; it is the total sample size requisite for the desired level of power for comparisons of
dependent means and proportions as well as tests of correlations.

(a) One Prior Study
Effect Size and Sample Size
Standard PCES
Effect Size (Delta) 0.3081  0.2709
Variance (sigma2) 1.0000 1.0000

Sample Size 131.0000 169.0000

The sample size provided is the sample size per condition requisite for the desired level of power for comparisons of
independent means and proportions; it is the total sample size requisite for the desired level of power for comparisons of
dependent means and proportions as well as tests of correlations.

(b) Multiple Prior Studies

Figure 5. Screenshots of website output. The website returns the power-calibrated effect size (PCES) as well as the
sample size required for adequate power. This analysis assumes a comparison two independent means using a
one-sided test at o = 0.05 with 80% as the desired level of power based on one prior study and multiple prior studies
respectively.
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1.05V0.207 + 2.00-0.10% = 0.15, and the PCES approach suggests

. 1237-0.50 - (1 = 0.50 . ..
a sample size of + = 133 subjects per condition.

Comparison of two dependent proportions. A comparison
of two dependent proportions resulting from a within-subjects
study with a binary dependent variable yet again requires three
inputs: p,; and p,, (Where p,; is the proportion who selected i then
j) as well as v. The textbook sample size formula is +
(F* 2) (Po1+Pp10)
where j = piy/(po1 + pip) and the PCES formula is % +
2.05(p — %) — 1.05 (p‘ - %)2 +2.00v%. Assuming a prior study
(or a meta-analysis of several prior studies) yields a point estimate
Po1 = 0.10 and p,;, = 0.20 (so that j = 0.67) and standard error (of

p v = 010, the PCES is 1 + 205-(067 — 3) —

105/ (0.67 — 1)*+2.00-0.10> = 0.61, and the PCES approach

suggests a sample size of ———=2——— = 409 subjects in
23 P (0461 - %)2(0.10 +0.30) )

total.

Test of a correlation coefficient. Finally, a test of a corre-
lation coefficient resulting from a study that collects two con-
tinuous dependent variables per subject requires two inputs: p
and v. The textbook sample size formula is % + 3 where Z, is
the Fisher Z-transformation of the correlation coefficient (i.e.,

z, = %log (1—1“&) = arctanh(p)) and the PCES formula is

2.05Z, — 1.05V/ Zﬁ +2.00v%. Assuming a prior study (or a meta-
analysis of several prior studies) yields a point estimate p = 0.20 (and

thus Z, = 0.20) and standard error (of Z)) v = 0.10, the PCES is
2.05-0.20 — 1.05V0.20* +2.00-0.10? = 0.16, and the PCES ap-
proach suggests a sample size of 5 ‘11682 + 3 = 257 subjects in total.

Inputs. We note that when only one prior study is available,
the inputs for the four cases discussed above can easily be obtained
from that study just as illustrated for the case of a comparison of
two independent means using data from Iyengar and Lepper
(2000) Study 2. For example, for a test of a correlation coefficient,
the correlation observed in the prior study yields the point estimate
of p (and thus of Z ) while the uncertainty is given by the standard
error v = \/ 1/(ny—3) where ny is the sample size from that study.
‘When multiple prior studies are available, a meta-analysis of those
studies yields the necessary inputs.

Discussion

Researchers planning replication studies want to ensure their stud-
ies have adequate power. Textbook sample size formulae and statis-
tical software guarantee the desired level of power but presume the
effect size is known. Although researchers often have some idea of
the effect size from prior studies, they still face considerable
uncertainty. We demonstrate how to cope with and explicitly
account for this uncertainty in a manner that properly calibrates
power via our PCES approach. As a result, this paper contributes
to previous work on effect sizes that stress the importance of
accompanying an effect size with an interval estimate as a measure
of estimation uncertainty (Kelley & Preacher, 2012) as well work
that discusses how to set sample sizes in the face of uncertain
effect sizes (Perugini et al., 2014).

To make our approach directly applicable to applied research,
we provided PCES formulae for the statistical tests most often
used in psychology in Table 2. The PCES can be used in conjunc-
tion with textbook formulae or software to obtain sample sizes that

account for uncertainty in a manner that properly calibrates power.
Our approach requires larger sample sizes than the point estimate
approach that ignores uncertainty, but it does not require the more
extreme sample sizes associated with alternative approaches that
account for uncertainty such as the safeguard power approach. We
also showed how to obtain the inputs to our formulae in the context
of planning a replication study of the choice overload effect when
one prior study is available and when multiple prior studies are
available. Finally, we discussed an easy-to-use website and code
that implements our formulae.

When researchers assume a known effect size but actually
face uncertainty, power calculations are optimistic, and this
false optimism causes sample sizes to be set too low. Conse-
quently, studies may fail at a greater than expected rate, thus
shedding light on current difficulties in replicating psycholog-
ical research. The formulae given in Tables 1-2 and imple-
mented on the website and in the code provided both in the
online supplementary materials and on the website allow re-
searchers to adjust an effect size for uncertainty and then to use
textbook formulae or software. This restores power to the
desired level on average and thus should be helpful for re-
searchers attempting replication.
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Appendix
Expected Power and the PCES

As discussed in the main text, the PCES is the 6 such that
P(6, n*, o) = EP*(mr, n*, o) where EP* is the desired level of power
on average and n* is the sample size requisite to obtain it. To
determine the PCES, we return to the expected power equation
(Equation 2) noting

EP(m, n, ) = f o P8, 1, )m(01D)d6
- fo Ux:T(x)eR,l ,,fT(X 10, ”)dx]’ﬂ'(e ID)d

= [, 1116, nym(01 D)

T JxTER,

_ LT(X)ERW [ o fr(x10, mym(0 ID)de]dx

= x;T(x)engT(X |, n, D)dx 3)
where the first line defines expected power as a weighted average of
power, the second line simply substitutes in the definition of power
(Equation 1), the third and fourth lines rearrange terms, and the fifth
line defines gT(x |, n,D) = Jo fT(xI 0, n)m(01D)do; gT(xITr, n, D) is
sometimes called the posterior predictive distribution of the test sta-
tistic.

Equation 3 contains two principal probability density functions:
(a) fr, the density of the sampling distribution of the test statistic,
and (b) m, the density that characterizes the researcher’s beliefs
about the parameter 0 (sometimes 7 is called the prior distribution;
as illustrated in the main text, this is misleading because m is
typically based on data from prior studies and thus is better thought
of as the posterior distribution resulting from the observation of
those studies). As shown in the equation, f; and 7 jointly deter-
mine gr.

When f;. and 7 are both normal densities and 6 denotes the mean
of fr, gr is also a normal density (with mean equal to the mean of
a and variance equal to the sum of the variances of f;, and ), and
EP can typically be simplified considerably (e.g., to the integral of
a scalar variable from a given value to infinity). While assuming
both f; and 7 are normal may seem like a large assumption, in
practice this is not necessarily the case. First, f; is the density of

the sampling distribution of a test statistic, and such sampling
distributions are often normal; when they are not, they are often
asymptotically normal. Second, estimates of 0 are often derived
from prior research and in particular from statistics that have
normal or asymptotically normal sampling distributions (in fact in
some cases these distributions can even be used as ). Conse-
quently, it is reasonable across a wide variety of cases to assume
that both f. and m are normal. Further, as we demonstrate below,
the assumption works well in practice.

Now, consider a one-sided test of Hy : 6 = 6, versus H, : 6 > 0,
where (a) f; is normal with variance o3(n) that is a function of the
sample size n and (b)  is normal with mean 0, (reflecting the
point estimate of 0) and variance v* (reflecting the uncertainty in
the point estimate). Let 0(n) = a3(n) + v>. To achieve a given
level of power 1 — 3 while maintaining the size a of the test, we
simply need to choose the sample size n such that

By + 21-a00(n) = 6 + 2071 (n) “

where z, is the 100y percentile of the standard normal distribution.
We note that (a) these tests assume 0, > 6, without loss of
generality and (b) this approach also applies to two-sided tests.?

When 6 is known to be 6,, then 1> = 0 so oi(n) = o3(n).

Consequently, we can solve Equation 4 for oy(n) = Zi‘;e“ For
normal fr, we typically have oy(n) = ¢/Vn for some known

constant ¢ thereby allowing us to solve for n yielding

—z5

2 RV
n= C (Zlfoc Z§) ) (5)
(6, — 6p)°

Thus, when 6 is known to be 0, we can achieve a given level of
power by setting sample sizes according to the above formula.

2 For two-sided tests of Hy : © = 6, versus H; : 0 # 0, we can use the
approach outlined above with z, _,, in place of z, _,. While this excludes
the generally small amount of probability that lies in the lower tail (i.e.,
below 6y + z,,00(n)), we believe this is reasonable in our setting of
replication studies as a replication study that attained statistical signifi-
cance but was opposite in sign to a prior study would not be deemed a
successful replication.

(Appendix continues)



ted broadly.

publishers.

gical Association or one of its allied
1al user

This document is copyrighted by the American Psycholo

This article is intended solely for the personal use of

PLANNING SAMPLE SIZES WHEN EFFECT SIZES ARE UNCERTAIN 59

When 6 is unknown but believed to have expectation 0, and
variance v* (i.e., m has mean 0, and variance v?), then o(n) =
o3(n) + v2. Substituting the square root of this quantity into
Equation 4 for o,(n) and solving for o (n) yields

_ 2100 = 00 + 25V (0, — 09 +v*(d_, — 25)
- 2 _ 2 :
-a —

oo(n)
(6)

Again letting oy(n) = ¢/Vn for some known constant ¢, we can
solve for n yielding

G-

n= .
[21-(0) — 60) + 2V (0, — 007 + (5o —23) |

(N

Thus, when 0 is unknown but believed to have expectation 6, and
variance 1°, we can achieve a given level of power by setting
sample sizes according to the above formula.

To obtain the PCES, denoted 6;, we merely need to set Equation
5 (with 8, in place of 8,) equal to Equation 7

Azia—2)°
(6, — 69)°
Azi-a — )
- 2 2(2 2y J? ®)
212081 — 80) + 2 V/ (6, — 00 + (o — ) ]
and solve for 6, yielding
- Z1-a(01 = 09) + 25V (0, — 00 + v (. — )
91 = 90 + .
21—« T2
9

This formula is easy to apply in practice. For instance, in the standard
case of a null hypothesis of zero effect (i.e., 6, = 0) with a = 0.05
(i.e., zj_o = 1.64) and power equal to 80% (ie., = 0.20 and
7z = —0.84), it simplifies to

6, =2.050, — 1.05\/ 6% + 2.001%. (10)

The PCES 6, used in conjunction with textbook sample size
formulae (of the form of Equation 5) or statistical software yields
sample sizes that account for uncertainty in 6, and provide the
desired level on power on average. The PCES also provides
intuition about importance of uncertainty in a given example (see,
for example, Figure 2).

The PCES formulae reported in Table 2 come directly from
Equation 9 substituting as appropriate. In particular, for a compar-
ison of two independent means, a comparison of two dependent
means, and a comparison of two independent proportions, we

substitute 6, = 0 and 6, = A (i.e., the difference between the two
means or proportions). For a comparison of two dependent pro-
portions, we substitute 6, = 1/2 and 6; = p. Finally, for a test of
a correlation coefficient, we substitute 6, = 0 and 6, = Z,.

A potential concern with the PCES formulae reported in Table
2 is that they are based on the assumption that both f;. and  are
normal, which seldom holds precisely in practice. Consequently,
sample sizes set based on these formulae may fail to provide the
desired level of power on average. We can investigate this by
noting that the expected power of a replication study based on a
prior study with a sample size of n; is

EP(ng, n*, o) = on fx:T(x)ER Sr(x10, n*(Xp))fr(Xo 1 0, ng)dxdx,

an

where X is the sample space of the prior study data and n*(x,) is
the sample size for the replication study; n*(x,) is generally a
function of the observed prior study data x,,.

For example, consider a comparison of two independent means.
Assuming the individual-level observations are normally distrib-
uted with unknown variance (i.e., the standard assumption used in
practice), then f. is not normal as assumed by our PCES formulae
but noncentral 7 with 2n — 2 degrees of freedom and noncentrality
parameter + where A is the true difference in the two means,
o is the variance of the individual-level observations, and 7 is the
sample size in each condition. To assess the performance of our
formulae in this setting, we can calculate the expected power using
Equation 11 with the noncentral ¢ distribution in place of f;. and
with the sample size based on the PCES for a comparison of two
independent means in place of n*(x).

We depict this assessment in Figure Al assuming a one-sided
test at o« = 0.05 with 80% as the desired level of power; we set A to
0.2, 0.5, and 0.8 in turn and without loss of generality o? to one so
that the A correspond to the respective definitions of small, me-
dium, and large effect sizes in psychology (Cohen, 1992). We note
that 1> = 20°/n so the uncertainty v presented on the x-axis in
Figure Al corresponds to a prior study with sample size per
condition ranging from infinite (v = 0.0) to about 22 (v = 0.3)
while the expected power presented on the y-axis is that of the
replication study when the sample size is set based on the PCES,
which is in turn based on the data from the prior study. As can be
seen, power is closely calibrated to the desired level: when v is
small or modest relative to A, the sample size based on the PCES
provides the desired level of power on average while when v is
large relative to A, it provides somewhat greater power suggesting
it is conservative in these settings.

We have conducted this assessment for all five PCES formulae
reported in Table 2 across a wide range of values for «, 3, effect
sizes (i.e., A, p, and Z,), and v, and confirm that the results
presented in Figure Al are representative.

(Appendix continues)
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Expected Power
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Expected power. We assume a comparison of two independent means using a one-sided test at o« =

0.05 with 80% as the desired level of power. Power is closely calibrated to the desired level. When v is
sufficiently large relative to A, the power-calibrated effect size does not exist and so expected power is not

defined.

As a final comment, recall that the PCES formulae reported in
Table 2 are based on w(81D) being normal with mean 6 and
variance v>. When 0 is set to the point estimate based on data from
prior studies and v? is set to the variance associated with that point
estimate (e.g., as in the choice overload example in the main text),
then w(01D) is the posterior distribution corresponding to a normal
sampling distribution for the point estimate and a noninformative
prior for 6. In practice, a normal sampling distribution and a
noninformative prior distribution need not be assumed, and PCESs
can be derived under alternative specifications (although analytic
PCES formulae will not always result). Moreover, if a normal
sampling distribution and a normal prior are assumed, then our
PCES formulae are still valid but simply require different inputs.
In particular, if the prior is assumed to be normal with mean 8 and
variance 7%, then w(61D) will be normal with mean % nd

variance Iy where we again set 0 to the point estimate based
Vv v

on data from prior studies and v* to the variance associated with
that point estimate; using this mean and variance in place of 0
and v* respectively in our PCES formulae (i.e., instead of
simply the point estimate and the variance associated with it)
yields the PCES under the assumption of a normal sampling
distribution and an informative normal prior. However, regard-
less of the sampling and prior distributions assumed, the ex-
pected power of a replication study averaged over the prior is
exactly calibrated to the desired level when the sample size for
the replication study is set using the PCES corresponding to the
assumed sampling and prior distributions.
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