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MULTILEVEL MULTIVARIATE META-ANALYSIS WITH APPLICATION TO CHOICE
OVERLOAD
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We introduce multilevel multivariate meta-analysis methodology designed to account for the com-
plexity of contemporary psychological research data. Our methodology directly models the observations
from a set of studies in a manner that accounts for the variation and covariation induced by the facts that
observations differ in their dependent measures and moderators and are nested within, for example, papers,
studies, groups of subjects, and study conditions. Our methodology is motivated by data from papers and
studies of the choice overload hypothesis. It more fully accounts for the complexity of choice overload
data relative to two prior meta-analyses and thus provides richer insight. In particular, it shows that choice
overload varies substantially as a function of the six dependent measures and four moderators examined
in the domain and that there are potentially interesting and theoretically important interactions among
them. It also shows that the various dependent measures have differing levels of variation and that levels
up to and including the highest (i.e., the fifth, or paper, level) are necessary to capture the variation and
covariation induced by the nesting structure. Our results have substantial implications for future studies of
choice overload.
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1. Introduction

Contemporary psychological research can be dizzying in its complexity, and this complexity
results in patterns of variation and covariation among the observations from a set of papers and
studies that requires careful treatment in meta-analysis. For example, individual studies in a given
domain can vary considerably in terms of their dependent measures and moderators; examine
multiple conditions that result from the experimental manipulation of those moderators and give
rise to multiple dependent effects of interest (e.g., simple effects and interaction effects); employ
a mix of study designs (e.g., unmoderated versus moderated, between-subjects versus within-
subjects, univariate versus multivariate); and feature different contexts, treatment manipulations,
and measurement scales. Further, individual papers feature multiple studies that, while different,
are quite similar particularly in comparison to studies featured in other papers.

However, the meta-analytic techniques typically employed in practice introduce a host of
simplifications that fail to account for this complexity. For example, a common approach involves
collapsing the observations from multiple conditions of each study to form a single effect of
interest; converting the effects to a common, standardized scale such as the Cohen’s d scale; and
modeling the standardized effects via a linear mixed model with one or two variance component
parameters. If differences in dependent measures or moderators are accounted for, this is typically
done only via fixed main effects. These simplifications can result in inter alia the neglect of
differences in dependent measures and moderators and miscalibrated inference.
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In this paper, we introduce multilevel multivariate meta-analysis methodology that better
accounts for the complexity of contemporary psychological research data. In particular, our
methodology directly models the observations from a set of studies in a manner that accounts
for the variation and covariation induced by the facts that observations differ in their dependent
measures and moderators and are nested within, for example, papers, studies, groups of subjects,
and study conditions. We also introduce two theoretically interesting and extremely parsimonious
special cases of our methodology.

Ourmethodology is motivated by data from papers and studies of the choice overload hypoth-
esis, the conjecture that an increase in the number of options from which to choose can result
in adverse consequences such as a decrease in the likelihood of making a choice or a decrease
in the satisfaction with a choice. Choice overload has already been the subject of two prominent
meta-analyses (Scheibehenne et al., 2010; Chernev et al., 2015). These meta-analyses employed
different variations of the simplifications to the data and model discussed above and arrived at
contradictory conclusions: Scheibehenne et al. (2010) “found amean effect size of virtually zero,”
whereas Chernev et al. (2015) found that “the overall effect of assortment size on choice overload
is significant.”

To resolve this difference, we apply our methodology to the set of fifty-seven studies from
twenty-one papers originally examined by Chernev et al. (2015). By avoiding the simplifications
employed in the two priormeta-analyses, ourmethodologymore fully accounts for the complexity
of choice overload data and provides richer insight. In particular, it shows that choice overload
varies substantially as a function of the six dependent measures and four moderators examined
in the domain and that there are potentially interesting and theoretically important interactions
among them. It also shows that the various dependent measures have differing levels of variation
and that levels up to and including the highest (i.e., the fifth, or paper, level) are necessary to
capture the variation and covariation induced by the nesting structure.

2. Methodology

In this section, we introduce our multilevel multivariate meta-analysis methodology. Our
methodology belongs, broadly speaking, to the class of meta-analytic techniques known as multi-
variate meta-analysis models (Kalaian & Raudenbush, 1996; Berkey et al., 1998; Becker, 2000).
Such models employ a variant of the linear mixed model (Harville, 1977; Robinson, 1991) that
accounts for covariation among sampling errors as well as among true effects.

Our methodology generalizes prior multivariate meta-analysis models in three important
respects, namely to simultaneously accommodate (i) not two dependent measures but an arbitrary
number of dependent measures; (ii) not a single effect of interest (arising from, for example, a
two condition study) but an arbitrary number of study conditions that result from the experimental
manipulation of moderators and give rise to multiple dependent effects of interest; and (iii) not
two levels but an arbitrary number of levels that account for the variation and covariation induced
by the fact that the observations are nested (e.g., within papers, studies, groups of subjects, and
study conditions). These extensions are important because they are motivated by and respectful
of key features of contemporary psychological research data and thereby allow our methodology
to better account for the variation and covariation induced by the facts that observations differ in
their dependent measures and moderators and are nested.

As a precursor to our model specification, we assume without loss of generality that each
paper p features Sp studies and that there are a total of D unique dependent measures and C
unique conditions across all studies and papers. We also assume, for notational simplicity, that
each study of each paper measures each of the D dependent measures in each of theC conditions;
as our methodology is fully general, we later relax this assumption.
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We let Yp,s be the matrix of dimension C × D containing a statistic (e.g., the mean) that
summarizes the individual-level observations of each dependent measure d in each condition c in
study s of paper p and we let Yp = [YT

p,1 · · ·YT
p,Sp

]T be the matrix of dimension SpC × D. Our
model specification for Yp is given by

Yp = (1Sp ⊗ A) + Bp + Ep

where1k is a columnvector of length k containing all ones;A is amatrix of dimensionC×Dwhose
entries give the meta-analytic summary parameter for each condition and dependent measure and
are sometimes called the fixed effects; Bp is a matrix of dimension SpC × D whose entries are
sometimes called the random effects for paper p; and Ep is a matrix of dimension SpC × D of
random (i.e., sampling) errors for paper p.1

We further assume that vec(Bp)
iid∼ N(0SpCD,Dp) for all p; vec(Ep)

iid∼ N(0SpCD,Rp) for
all p; and cov(vec(Bp), vec(Ep)) = 0SpCD,SpCD for all p where 0k is a column vector of length
k containing all zeroes and 0k1,k2 is a matrix of dimension k1 × k2 containing all zeroes. Thus, the
Rp give the level one variance-covariance matrices that model sampling error and the Dp give
the level two and higher variance-covariance matrices that model the variation and covariation
among the true values of the observations induced by the fact that the observations are nested.
Given this specification, the Yp have marginal distribution

vec(Yp)
iid∼ N(vec(1Sp ⊗ A),Vp)

where Vp = Dp + Rp. As is standard in meta-analysis, we assume that the Rp are known and
that the Dp are a function of a parameter vector θθθ (though for notational simplicity we suppress
this dependence) and we seek to estimate A and θθθ .

Our specification for the Dp begins by noting that the Dp can be partitioned into blocks
Dp,d1,d2 for d1, d2 ∈ {1, . . . , D} where Dp,d1,d2 is the SpC × SpC variance-covariance matrix of
columns d1 and d2 of Bp (and whereDp,d1,d2 = DT

p,d2,d1
due to the symmetry ofDp). Given this,

our specification for the Dp,d1,d2 is given by

Dp,d1,d2 =
K∑

k=2

σk,d1,d2Mk,p

where K gives the number of levels in the nesting structure; the σk,d1,d2 give the degree of
variation and covariation among the true values of the observations of dependent measures d1 and
d2 induced by level k of the nesting structure; and theMk,p are binary matrices with entries equal
to one if the corresponding entries of vec(Yp) are nested in the same group at level k and zero
otherwise.2 We note that we start k, our index for the level, at two because theDp give the level two

1 A somewhat more general version of our model specification is given by Yp = XpA+ZpBp +Ep where Yp and
Ep are as in the main text; Xp and Zp are “regressor” matrices of dimension SpC × q1 and SpC × Spq2, respectively;
A is a matrix of dimension q1 × D; and Bp is a matrix of dimension Spq2 × D. The specification in the main text
sets q1 = q2 = C ; Xp = 1Sp ⊗ IC where Ik is the k × k identity matrix; and Zp = ISp ⊗ IC = ISpC . The more
general specification requires that the Xp are known but allows the Dp , Rp , and possibly even the Zp to be functions
of a parameter vector θθθ . Provided the specification for the Zp remains Zp = ISpC as in the main text, the specification
for the Dp given there can be used under the more general specification; however, alternative specifications for the Zp
necessitate alternative specifications for the Dp .

2 Given the Yp notation used in our model specification, the K th level is here the paper level (and thus all entries of
theMK ,p are one). However, this is a mere artifact of the notation: our methodology accommodates an arbitrary number
of arbitrarily defined levels and the paper level either need not be one of or may be any one of these levels.
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and higher variance–covariance matrices, whereas the Rp give the level one variance–covariance
matrices. Given this specification, θθθ consists of the variance component parameters {σk,d1,d2} for
k ∈ {2, . . . , K } and d1, d2 ∈ {1, . . . , D}.

We term this specification for the Dp multilevel multivariate compound symmetry (MMCS)
and note that it is quite parsimonious: it consists of only (K − 1)D(D + 1)/2 variance compo-
nent parameters for a space of dimension

∑
p SpCD(SpCD + 1)/2. Nonetheless, in addition to

our general MMCS specification for the Dp, we also consider two theoretically interesting and
extremely parsimonious special cases of MMCS.

The first, which we term equal allocation multilevel multivariate compound symmetry
(EAMMCS), constrains the fractional allocation of the variation and covariation induced by
the components of the nesting structure to be equal across all dependent measure pairs and is
specified as follows. Let σd1,d2 = ∑K

k=2 σk,d1,d2 and πk,d1,d2 = σk,d1,d2/σd1,d2 ; in this case, the
πk,d1,d2 give the fractional allocation of the degree of variation and covariation among the true
values of the observations of dependent measures d1 and d2 induced by level k of the nesting
structure. EAMMCS holds when we constrain this fractional allocation to be equal across all
dependent measure pairs, namely by constraining πk,d1,d2 = πk,d3,d4 for all d1, d2, d3, d4. Under
this restricted specification, the parameter space consists of only D(D+1)/2+(K−2) parameters
(i.e., θθθ = ({σd1,d2}, {πk}) for d1, d2 ∈ {1, . . . , D} and k ∈ {2, . . . , K } where ∑

πk = 1).

The second, which we term single correlation equal allocation multilevel multivariate com-
pound symmetry (SCEAMMCS), further constrains the correlation across the dependentmeasures
induced by the nesting structure to be equal across all dependent measure pairs—a hypothesis
that is consistent with and may follow from their measuring the same construct—and is specified
as follows. Let ρd1,d2 = σd1,d2/

√
σd1,d1σd2,d2 ; in this case, the ρd1,d2 give the correlation between

dependent measures d1 and d2 induced by the nesting structure. SCEAMMCS holds when we
constrain this correlation to be equal across all dependent measure pairs, namely by constrain-
ing ρd1,d2 = ρd3,d4 for all d1, d2, d3, d4. Under this restricted specification, the parameter space
consists of only D + (K − 1) parameters (i.e., θθθ = ({σd,d}, ρ, {πk}) for d ∈ {1, . . . , D} and
k ∈ {2, . . . , K } where ∑

πk = 1).3

Finally, our specification for theRp is straightforward.We let theRp be given by the observed
variance–covariance matrix of the Yp; these can be easily calculated from the individual-level
observations that the Yp summarize. As the Rp give the level one variance–covariance matri-
ces, they contain the analogue of the σ1,d1,d2 implicitly suggested by the notation used in our
specification for the Dp.

We now return to our simplifying assumption, namely that each study of each paper measures
each of the D dependent measures in each of the C conditions. When dependent measure d in
condition c is not observed in a given study of a given paper, we simply (i) remove the correspond-
ing row of vec(Yp), vec(1Sp ⊗A), vec(Bp), and vec(Ep) and (ii) remove the corresponding row
and column of Dp and Rp when forming the likelihood for paper p. This relaxes our simplifying
assumption and is fully general.

Estimation of our model is as follows. We first estimate theRp using conventional estimators
and, as is standard inmeta-analysis, assume they are known. Next, we estimateθθθ (and thus theDp)
using restricted (or residual or reduced) maximum likelihood (REML) (Harville, 1977; Robinson,
1991) conditional on the estimates of the Rp. Finally, we estimate A and its variance–covariance
matrix using generalized least squares conditional on the estimates of the Rp and θθθ .

3 While a single correlation multilevel multivariate compound symmetry model specification that constrains the
correlation across the dependent measures induced by the nesting structure to be equal across all dependent measure pairs
without also constraining the fractional allocation to be equal (and that thus consists of only (K − 1)D + (K − 1)D(D −
1)/2 + 1 parameters) is possible, we find such a specification implausible and thus do not consider it here.
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3. Application to Choice Overload

In this section, we present our application to choice overload. We begin by briefly reviewing
choice overload theory and two prior meta-analyses of choice overload. We then discuss our data,
model specifications, and model estimates. We conclude by comparing our results to those of
the two prior meta-analyses of choice overload and discussing implications for future studies of
choice overload.

3.1. Theory

Common belief holds that better outcomes result when individuals have a greater number
of options from which to choose. This is also “the standard line among social scientists who
study choice. If we’re rational, they tell us, added options can only make us better off” (Schwartz,
2004). However, a large number of studies conducted over the last fifteen years suggest this is
not necessarily the case: choice sets that contain many options can trigger choice overload that
makes individuals worse off. For example, individuals facing large choice sets may be less likely
to make a choice or be less satisfied with a choice.

Given the counterintuitive andwide-reaching implications of this finding, the choice overload
hypothesis has attracted a considerable amount of attention. Researchers have studied choice
overload in a host of product categories including inexpensive everyday goods such as jam and
toothpaste (Iyengar & Lepper, 2000; Chernev, 2005), expensive luxury goods such as hotel resorts
and vacation packages (Chernev, 2006; Goodman&Malkoc, 2012), expensive durable goods such
as mobile phones and laptops (Fasolo et al., 2009; Sela et al., 2009), and socially important goods
such as charities and mutual funds (Scheibehenne et al., 2009; Morrin et al., 2012).

Researchers have also examined the effect of small versus large choice sets on several depen-
dent measures. In particular, they have investigated behavioral outcomes such as choice deferral
(i.e., the likelihood of postponing or choosing not to make a choice; Shah & Wolford, 2007;
Townsend & Kahn, 2014), switching likelihood (i.e., the likelihood of switching to an alternative
option; Chernev, 2003a), assortment choice (i.e., the likelihood of selecting a small versus large
choice set; Chernev, 2006; Chernev & Hamilton, 2009), and option selection (i.e., the likelihood
of selecting some “target” option; Gourville & Soman, 2005; Sela et al., 2009). They have also
explored the effect of choice overload on subjective states such as choice satisfaction (i.e., a sub-
jective self-assessment of satisfaction with the chosen option; Iyengar & Lepper, 2000; Diehl &
Poynor, 2010), decision regret (i.e, a subjective self-assessment of regret for the chosen option;
Lin & Wu, 2006; Haynes, 2009), and decision confidence (i.e, a subjective self-assessment of
confidence in the chosen option; Chernev, 2003a, 2003b).

In addition, researchers have examined moderators of choice overload, that is, factors that
exacerbate, attenuate, nullify, or reverse it. These moderators can be divided into two broad
classes: extrinsic (or objective) factors and intrinsic (or subjective) factors. Among the former are
choice set complexity (i.e., aspects of the decision task that influence the values of the particular
choice options without necessarily influencing the structural aspects of the decision problem
at hand; Chernev, 2005; Gourville & Soman, 2005) and decision task difficulty (i.e., general
structural characteristics of the decision problem that do not influence the values of the particular
choice options; Greifeneder et al., 2010; Inbar et al., 2011) while among the latter are preference
uncertainty (i.e., the degree to which individuals have articulated preferences with respect to the
decision at hand; Chernev, 2003b; Mogilner et al., 2008) and the decision goal (i.e., the degree to
which individuals aim to minimize the cognitive effort involved in making a choice; Oppewal &
Koelemeijer, 2005; Lin & Wu, 2006).

Chernev et al. (2015) present a conceptual model of choice overload based on Payne et
al. (1993) that we depict graphically in Fig. 1. We use this conceptual model to inform how
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Figure 1.
Conceptual model of the impact of choice set size on choice overload. The four antecedents of choice overload are
operationalized as follows: (i) the complexity of the choice set describes the aspects of the decision set associated with
the particular values of the choice options: the presence of a dominant option in the choice set, the overall attractiveness
of the options in the choice set, and the relationship between individual options in the decision set (alignability and
complementarity); (ii) the difficulty of the decision task refers to the general structural characteristics of the decision
problem: time constraints, decision accountability, and number of attributes describing each option; (iii) preference uncer-
tainty refers to the degree to which individuals have articulated preferences with respect to the decision at hand and has
been operationalized by two factors: the level of product-specific expertise and the availability of an articulated ideal
point; and (iv) the decision goal reflects the degree to which individuals aim to minimize the cognitive effort involved
in making a choice among the options contained in the available choice sets and is operationalized by two measures:
decision intent (buying vs. browsing) and decision focus (choosing a choice set vs. choosing a particular option). In
this context, we expect higher levels of decision task difficulty, greater choice set complexity, higher preference uncer-
tainty, and a more prominent, effort-minimizing goal to produce greater choice overload. Source: Chernev et al. (2015),
Figure 1.

our methodology accounts for the fact that observations of choice overload data differ in their
dependent measures and moderators.

3.2. Prior Meta-analyses

Given the considerable attention the choice overload hypothesis has attracted, it may be
unsurprising that choice overload has already been the subject of two prominent meta-analyses
(Scheibehenne et al., 2010, Chernev et al., 2015). These meta-analyses arrived at contradictory
conclusions: Scheibehenne et al. (2010) “found amean effect size of virtually zero” and concluded
that only “idiosyncratic moderators...explain when and why choice overload reliably occurs,”
whereas Chernev et al. (2015) found that “when moderating variables are taken into account the
overall effect of assortment size on choice overload is significant.”

Importantly, both of these meta-analyses employed the simplifications to the data and model
discussed in Sect. 1 and thus failed to fully account for the complexity of choice overload data.
In particular, they simplified the analysis along three lines. First, both collapsed the observa-
tions across study conditions and used the simple contrast between small and large choice sets as
measured on the standardized Cohen’s d scale as the response variable. This resulted in the dis-
tinction among the dependent measures either being largely ignored (Scheibehenne et al., 2010)
or accounted for only via fixed main effects (Chernev et al., 2015). Second, they largely ignored
(Scheibehenne et al., 2010) or only partially accounted for (Chernev et al., 2015) the four mod-
erators studied in the domain. Third, they did not account for the variation and covariation in the
observations induced by the fact that they differ in their dependent measures and are nested within
papers, studies, groups of subjects, and study conditions. In particular, Scheibehenne et al. (2010)
employed a two-level model with a single variance component parameter that ignores inter alia
potentially differing levels of variation among the dependent measures and the covariation among
observations from the same paper and study. Similarly, Chernev et al. (2015) employed a three-
level model with two variance component parameters that ignores inter alia potentially differing
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levels of variation among the dependent measures and the covariation among observations from
the same study beyond the covariation among observations from the same paper.

Given the differing simplifications employed, it is perhaps unsurprising that these two prior
meta-analyses arrived at contradictory conclusions. To resolve this difference, we employ our
methodology that more fully accounts for the complexity of choice overload data.

3.3. Data

For consistency with prior meta-analyses, we examine choice overload using the same set of
fifty-seven studies from twenty-one papers examined by Chernev et al. (2015). This allows us to
be sure any differences between their results and ours are due to differences in the meta-analysis
model employed rather than the underlying data.

Although we examine the same studies and papers as Chernev et al. (2015), our datasets
are entirely distinct. In particular, and as noted in the prior subsection, Chernev et al. (2015)
collapsed the observations across study conditions and analyzed the simple contrast between
small and large choice sets as measured on the standardized Cohen’s d scale as their univariate
response variable. In contrast, we use the summary statistic(s) from each study condition as
our multivariate response variable, thereby better preserving the nature of the data. For binary
dependent measures (i.e., assortment choice, choice deferral, option selection, and switching
likelihood), we use the proportion as our summary statistic; however, we conduct our analysis
on the log odds scale so all estimates remain bounded between zero and one when converted to
proportions. For integer-scale dependent measures (i.e., confidence, regret, and satisfaction), we
use the mean as our summary statistic. We convert all integer-scale dependent measures to the
one-to-nine scale as this was the most commonly used scale in our choice overload data; our
conversion is via a linear transformation,4 and while more sophisticated conversions are possible,
they can require moving beyond the linear mixed model.

FollowingChernev et al. (2015), and again to be sure any differences between their results and
ours are due to differences in the meta-analysis model employed, we treat satisfaction and con-
fidence as a single dependent measure thus leaving six dependent measures and four moderators
of choice overload. The data are coded such that higher values imply more positive outcomes for
all dependent measures (i.e., choice deferral, switching likelihood, and regret are reverse-coded),
and thus choice overload occurs when a dependent measure is lower for large versus small choice
sets.

In total, our data consist of 172 observations from 154 conditions measured on 147 groups
of subjects from fifty-seven studies from twenty-one papers. Consequently, the nesting structure
consists of K = 5 levels with observations nested within papers (level five), studies (level four),
groups of subjects (level three), and study conditions (level two).

Before proceeding, we make three comments about the paper and study designs employed
in our choice overload data. First, we present the number of papers and studies measuring each
dependent measure and manipulating each moderator in Table 1. As can be seen, two-fifths of
the dependent measure/moderator combinations are entirely unexamined while two-thirds (over
three-quarters) are examined by only one paper (three or fewer studies). This suggests many
entries of A are inestimable while many others are only weakly estimable.

Second, only six papers and only six studies from five papers measure more than one depen-
dent measure; all of these measure only two dependent measures with satisfaction as one of them.
Consequently, the vast majority of the σk,d1,d2 , d1 �= d2 are inestimable while the remaining ones
are only weakly estimable.

4 In particular, for integer-scale dependent measure y with scale minimum m and scale maximum M , we use
1 + 9−1

M−m (y − m) in place of y.
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Table 1.
Dependent measures and moderators of choice overload.

Dependent
measure

Moderator
No moderator Choice set

complexity
Decision
goal

Decision task
difficulty

Preference
uncertainty

Assortment choice 0 (0) 1 (8) 2 (9) 0 (0) 0 (0)
Choice deferral 3 (6) 1 (1) 0 (0) 2 (2) 2 (2)
Option selection 1 (4) 2 (3) 0 (0) 1 (2) 1 (1)
Regret 1 (1) 0 (0) 1 (1) 2 (2) 0 (0)
Satisfaction 3 (7) 0 (0) 2 (2) 2 (3) 4 (5)
Switching likelihood 0 (0) 0 (0) 0 (0) 0 (0) 1 (4)

Each cell gives the number of papers (studies) that measure the dependent measure given by the row
and manipulate the moderator given by the column. Papers that measure multiple dependent measures
or manipulate multiple moderators (studies that measure multiple dependent measures) appear in more than
one cell and thus the total in the table is greater than the number of unique papers (studies). Two-fifths of the
dependent measure/moderator combinations are entirely unexamined while two-thirds (over three-quarters)
are examined by only one paper (three or fewer studies).

Third, none of the eight studies from six papers that follow either within-subjects ormultivari-
ate study designs reported the correlation of the observations relevant for theRp—an unfortunate
but common practice (Becker et al., 2004; Riley, 2009). Thus, in our principal analysis, we follow
the recommendation of Ishak et al. (2008) and assume these correlations are zero. However, we
also follow the recommendation of Riley (2009) and conduct a sensitivity analysis to assess the
impact of the assumption of zero correlation; such an analysis reveals no important differences
in results (see “Appendix A” for details).

3.4. Model Specifications

Before proceeding to model estimates, we first consider a sequence of nested simplifications
to theMMCS and EAMMCS specifications forθθθ presented in Sect. 2. The first and simplest model
specification we consider is the so-called fixed effects (or one-level) model specification that sets
the σk,d1,d2 = 0 for all k, d1, d2 for the MMCS specification (or equivalently the σd1,d2 = 0 for
all d1, d2 for the EAMMCS specification).

The second model specification we consider sets the σk,d,d equal to one another for all d and
the σk,d1,d2 = 0 for all k, d1 �= d2 for the MMCS specification (or equivalently the σd,d equal
to one another for all d and the σd1,d2 = 0 for all d1 �= d2 for the EAMMCS specification). We
term this the Equal Variance specification and note that this specification is analogous to those
employed in prior meta-analyses of choice overload (Scheibehenne et al., 2010 employed a two-
level version of this specification while Chernev et al., 2015 employed a three-level version of
this specification; as noted, we employ a five-level version and also consider a richer specification
for A).

The third model specification we consider sets (i) the σk,d1,d2 = 0 for all k, d1 �= d2 for the
MMCS specification and (ii) the σd1,d2 = 0 for all d1 �= d2 for the EAMMCS specification. We
term this the Unequal Variance specification and note that this specification is designed to relax
the Equal Variance assumption employed in prior meta-analyses of choice overload.

The fourth model specification we consider imposes no constraints on (i) the σk,d1,d2 for the
MMCS specification and (ii) the σd1,d2 and the πk for the EAMMCS specification other than
that imposed by the paper and study designs (i.e., inestimable parameters are set to zero as is
common in practice). We note that the two-level version of this specification is analogous to prior
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Table 2.
Model specification results.

Model specification MMCS EAMMCS

Fixed effects −450.61 (0)
Equal Variance −111.55 (4)
Unequal Variance −100.46 (19) −102.83 (9)
No Constraints −97.44 (26) −101.74 (13)

The table gives the REML log likelihood of (number of θθθ parameters estimated by) each model specification.
The EAMMCS Unequal Variance specification seems to best balance model fit against the number of
estimated parameters.

multivariate meta-analysis models (Kalaian & Raudenbush, 1996; Berkey et al., 1998; Becker,
2000).

We present the REML log likelihood of and the number of θθθ parameters estimated by each of
these model specifications in Table 2. For comparison with prior meta-analysis models, we note
that the REML log likelihood of (number of θθθ parameters estimated by) the two-level version of
the Equal Variance specification is −138.82 (1) and the two-level version of the No Constraints
specification is −123.28 (10). From this table and these results, it is clear that (i) our five-level
model specifications improve upon prior meta-analysis models thus demonstrating their benefit
in our application to choice overload; (ii) the MMCS specifications do not improve substantially
on the EAMMCS specifications thus reflecting that the fractional allocation of the variation and
covariation induced by the four components of the nesting structure is equal (or at least relatively
similar) across the dependentmeasures; (iii) theUnequalVariance specification improves substan-
tially upon the Equal Variance specification thus casting doubt on the Equal Variance assumption
employed in prior meta-analyses of choice overload; and (iv) the No Constraints specification
does not improve substantially on the Unequal Variance specification thus reflecting weak covari-
ation among the various dependent measure pairs or the fact that few papers and studies measure
more than one dependent measure.

We note we also considered the SCEAMMCS specification for θθθ presented in Sect. 2. As
this specification has no corresponding MMCS counterpart specification, we do not present it
in Table 2. However, the REML log likelihood of (number of θθθ parameters estimated by) this
specification is−102.79 (10) thus further reflectingweak covariation among the various dependent
measure pairs or the fact that few papers and studies measure more than one dependent measure.

In sum, it seems the EAMMCSUnequal Variance specification best balancesmodel fit against
the number of estimated parameters (e.g., it is the preferred model specification when using the
Akaike information criterion; Akaike, 1974). Given this, we proceed by analyzing the EAMMCS
Unequal Variance specification in greater depth.

3.5. Model Estimates

In this subsection, we discuss our model estimates of A and θθθ beginning with the former. We
present our estimates of the entries ofA, the meta-analytic summary parameter for each condition
and dependent measure, along with estimates from individual studies in Fig. 2. The large points
represent the estimates of the entries of A while the vertical lines represent estimates of plus and
minus one standard error; the small points represent estimates from individual studies. Estimates
for the binary dependent measures are presented on the probability scale while estimates for
the integer-scale dependent measures are presented on the one-to-nine scale. For all dependent
measures except assortment choice, choice overload occurs when a dependent measure is lower
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Figure 2.
Choice overload results. The large points represent the estimates of the entries ofA, the meta-analytic summary parameter
for each condition and dependentmeasure, while the vertical lines represent estimates of plus andminus one standard error.
The small points represent estimates from individual studies. Estimates for the binary dependent measures are presented
on the probability scale while estimates for the integer-scale dependent measures are presented on the one-to-nine scale.
Choice overload occurs when a dependent measure is lower for large versus small choice sets (or for lower values when
the dependent measure is assortment choice). Choice overload varies substantially as a function of the dependent measure
and moderator. These estimates and estimated standard errors along with z-statistics are available in “Appendix B”.

for large versus small choice sets; as assortment choice measures the choice of a large versus
a small choice set, choice overload occurs when the proportion choosing the large choice set
is lower. These estimates and estimated standard errors are available in “Appendix B”; because
the estimates for large and small choice sets conditional on the dependent measure, moderator,
and moderator level tend to be highly correlated, we also provide z-statistics, which give the
difference in the estimates for large versus small choice sets divided by the estimated standard
error of this difference, in “Appendix B.” The empty subplots and the subplots with few small
points that represent estimates from individual studies highlight the respective facts that no or few
papers and studies measure the corresponding dependent measure/moderator combinations (see
also Table 1).
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Table 3.
Estimates and estimated standard errors of σd,d .

Dependent measure Estimate SE

Assortment choice 0.52 0.13
Choice deferral 1.53 0.48
Option selection 0.53 0.21
Regret 0.37 0.31
Satisfaction 0.90 0.17
Switching likelihood 0.17 0.21

We present estimates on the standard deviation scale (i.e., estimates of
√

σd,d ) rather than the variance scale
so as to match the scale of the Yp and A. The various dependent measures have differing levels of variation.

Figure 2 shows that choice overload varies substantially as a function of the dependent
measure and moderator. For example, choice overload occurs for the high level of the decision
task difficulty moderator when option selection or satisfaction is the dependent measure; however,
it is reversed for the low level of the decision task difficulty moderator when option selection is the
dependent measure while it is nullified when satisfaction is the dependent measure. It also occurs
when there are no moderators regardless of the dependent measure while it fails to occur when
there are moderators—regardless of the moderator level—when choice deferral is the dependent
measure.

In sum, while choice overload reliably occurs for some dependent measure/moderator combi-
nations and it is reliably reversed for others, for still others the evidence is quitemixed. Indeed, it is
clear there are interactions among the dependent measures andmoderators and thus fully account-
ing for the various dependent measures and moderators is critical for modeling and understanding
choice overload.

We present our estimates of the σd,d parameters of θθθ along with estimated standard errors in
Table 3; we present estimates on the standard deviation scale (i.e., estimates of

√
σd,d ) rather than

the variance scale so as to match the scale of theYp andA. The various dependent measures have
differing levels of variation, with estimates ranging from close to zero for switching likelihood to
substantial for choice deferral.

Finally, we present our estimates of the πk parameters of θθθ ; as
∑

πk = 1, these estimates
reflect the fractional allocation of the variation and covariation induced by the four components
of the nesting structure. We estimate the fractional allocation induced at the paper level is 0.36,
at the study level is 0.53, at the group of subjects level is 0.01, and at the condition level is 0.10.
The covariation among the observations from the same paper and study is quite large; however,
because only four studies from three papers follow within-subjects study designs, the covariation
at the group of subjects level and the condition level is difficult to dissociate in these data.

3.6. Comparisons to Prior Meta-analyses and Implications for Future Studies

We assess our results in light of prior meta-analyses of choice overload. We then discuss
some implications of our results for future studies of choice overload.

Beginning with Scheibehenne et al. (2010), our results are inconsistent with their finding of
“a mean effect size of virtually zero” and conclusion that only “idiosyncratic moderators...explain
when and why choice overload reliably occurs” that they obtained by largely ignoring the distinc-
tion among the dependent measures and moderators. In contrast, Fig. 2 and “Appendix B” show
that choice overload varies substantially as a function of the dependent measure and moderator
and reliably occurs for many dependent measure/moderator combinations. Further, their two-
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level model with a single variance component parameter assumes that (i) the various dependent
measures have the same level of variation and (ii) the variation and covariation induced by the
four components of the nesting structure is induced only at the lowest level such that there is no
covariation induced by the nesting structure. In contrast, Tables 2 and 3 show that the various
dependent measures have differing levels of variation while our estimates of the πk show that
0.90 of the fractional allocation of the variation and covariation induced by the four components
of the nesting structure is induced by levels higher than the lowest such that there is substantial
covariation induced by the nesting structure. Falsely assuming no covariation is induced by the
nesting structure typically results in overly confident inference.

Moving onto Chernev et al. (2015), our results are largely consistent with their finding that
“when moderating variables are taken into account the overall effect of assortment size on choice
overload is significant.” However, our results are rather more nuanced because they show inter-
actions among the dependent measures and moderators. For example, their Table 2 indicates that
choice overload occurs in studies with no moderators, is exacerbated (reversed) in studies with
moderators when the moderator is set to the high (low) level, and does not much differ among the
various dependent measures. In contrast, Fig. 2 and “Appendix B” show choice overload varies
substantially as a function of the dependent measure and moderator and that there are interactions
among them. Further, their three-level model with two variance component parameters assumes
that (i) the various dependent measures have the same level of variation and (ii) there is no covari-
ation among observations from the same study beyond the covariation among observations from
the same paper. In contrast, Tables 2 and 3 show that the various dependent measures have dif-
fering levels of variation while our estimates of the πk show that there is substantial additional
covariation among observations from the same study beyond the covariation among observations
from the same paper. In particular, our estimates of the πk show that 0.53 of the variation and
covariation induced by the four components of the nesting structure is due to covariation among
observations from the same study beyond the covariation among observations from the same
paper. Because their estimate of the fractional allocation of the variation and covariation induced
by the nesting structure at the paper level is 0.72 and at the observation level is 0.28, their inference
is likely to be overly conservative.

More broadly, our results have implications for future studies of choice overload. For exam-
ple, our results show choice overload fails to occur when there are moderators—regardless of
the moderator level—when choice deferral is the dependent measure. However, they also show
that choice deferral is the dependent measure with by far the largest level of variation. As this is
a prominent and important dependent measure in the choice overload literature (e.g., it was the
primary dependent measure featured in the original studies of choice overload by Iyengar and
Lepper 2000), this suggests future research should examine this dependent measure and its inter-
action with various moderators in greater depth. In addition, for some dependent measures (e.g.,
option selection), when the moderator is set to the low level, choice overload tends to be reversed,
while for other dependent measures (e.g., satisfaction), it tends to be nullified. This suggests
future research should develop richer theory and examine how various moderators exacerbate,
attenuate, nullify, or reverse choice overload depending on the dependent measure. Further, the
fact that choice overload occurs for all dependent measures when there is no moderator but there
is a lack of agreement among the dependent measures when there is a moderator suggests that
future research should investigate whether the various dependent measures are equally valid in
assessing choice overload.
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4. Discussion

We have introduced multilevel multivariate meta-analysis methodology that better accounts
for the complexity of contemporary psychological research data, in particular the variation and
covariation induced by the facts that observations differ in their dependent measures and mod-
erators and are nested. Our methodology generalizes prior multivariate meta-analysis models in
three important respects, namely to simultaneously accommodate an arbitrary number of depen-
dent measures; an arbitrary number of study conditions that give rise to multiple dependent effects
of interest; and an arbitrary number of levels that account for the fact that the observations are
nested.

We have also introduced two theoretically interesting and extremely parsimonious special
cases of MMCS, namely the EAMMCS specification that constrains the fractional allocation of
the variation and covariation induced by the various components of the nesting structure to be
equal across all dependent measures pairs as well as the SCEAMMCS specification that further
constrains the correlation across the dependent measures induced by the nesting structure to be
equal across all dependent measures pairs.

In our application to choice overload, our analysis provided richer insight compared to two
prior meta-analyses. In particular, it showed that choice overload varies substantially as a function
of the six dependent measures and four moderators examined in the domain and that there are
potentially interesting and theoretically important interactions among them. It also showed that the
various dependent measures have differing levels of variation and that levels up to and including
the highest (i.e., the fifth, or paper, level) are necessary to capture the variation and covariation
induced by the nesting structure.

While our SCEAMMCS specification did not outperform other model specifications in our
application to choice overload, we believe this reflects the fact that few papers and studies of
choice overload measure more than one dependent measure and consequently that allowing for
covariation among the various dependent measure pairs simply does not much impact the model
fit in this application. Nonetheless, we believe this highly parsimonious model specification will
prove a powerful benchmark specification in future applications.

We note that underlying the SCEAMMCS specification is, in essence, a factor analytic model
featuring a single factor. Future research may consider extending this specification to allow for
multiple factors. This will allow for a richer pattern of covariation among the various dependent
measure pairs while remaining parsimonious.

Another potential model extension involves accounting for authors as well as papers, studies,
groups of subjects, and study conditions. If authors can be treated as random, our model can
trivially accommodate them by treating them as a sixth level. Nonetheless, this requires some
degree of special treatment: whereas it is quite clear what it means for observations to be nested in
the samegroup for groups such as papers, studies, groups of subjects, and study conditions, it is less
clear what this means for a group such as authors where, for example, partial overlap is possible.
Thus, future researchmay consider extending themodel to account for authors considering perhaps
both fixed as well as random treatments.

In conclusion, we reiterate that the complexity of contemporary psychological research data
results in patterns of variation and covariation among the observations from a set of studies that
requires careful treatment in meta-analysis. In particular, individual studies vary in terms of their
dependentmeasures andmoderators; examinemultiple conditions that give rise tomultiple depen-
dent effects of interest; and feature different contexts, treatment manipulations, and measurement
scales while individual papers feature multiple studies that vary but are similar in comparison
to studies featured in other papers. There is mounting evidence of and growing appreciation for
these differences across papers and studies and the complexity that results from them as well as
the need to address this complexity in sample size planning (McShane & Böckenholt, 2014), in
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meta-analysis (McShane & Böckenholt, 2017), and in adjusting for publication bias (McShane et
al., 2016). Themethodology presented here directly addresses this complexity by accommodating
an arbitrary number of dependent measures, study conditions, and levels in the nesting structure.
Because this methodology is motivated by and respectful of key features of contemporary psy-
chological research data, it is quite general and widely applicable and we expect it to yield rich
insight in future applications.

Appendix A: Sensitivity Analysis

None of the eight studies from six papers that follow either within-subjects or multivariate study
designs reported the correlation of the observations relevant for the Rp—an unfortunate but
common practice (Becker et al., 2004; Riley, 2009). Thus, in our principal analysis, we followed
the recommendation of Ishak et al. (2008) and assumed these correlations were zero. In this
appendix, we follow the recommendation of Riley (2009) and present a sensitivity analysis that
assesses the impact of the assumption of zero correlation on our results. As discussed below,
our analysis reveals no important differences in results; this is perhaps unsurprising as (i) only
eight studies from six papers follow either within-subjects or multivariate study designs and (ii)
the influence of within-study correlation is small when, as is generally the case in our data, the
variation among the true values of the observations is large relative to sampling error (Riley,
2009).

Across these eight studies from six papers, there were eight distinct correlation parameters
that were unreported. Consequently, we set these correlation parameters in turn to 0.1, 0.3, and
0.5 (i.e., a small, medium, and large correlation; Cohen, 1992) and recompute the Rp under
these assumptions. We then refit the EAMMCS Unequal Variance specification using each of the
38 = 6561 versions of the Rp.

Across the 6561 models, the REML log likelihood ranged from−103.37 to−102.15, a range
of only 1.22. The REML log likelihood of the model presented in the main text that assumed zero
correlation (i.e., diagonal Rp) was −102.83, solidly in the middle of this range. In terms of the
estimates of A, 98.1% (73.3%) were within 0.10 (0.01) of the estimates of the model presented
in the main text; further, 100% (100%) were included within the 95% (50%) interval estimates of
the model presented in the main text. The RMSE of the estimates as compared to the estimates of
the model presented in the main text was 0.03. In terms of the estimates of the σd,d parameters of
θθθ (which we evaluate on the standard deviation scale (i.e., estimates of

√
σd,d ) so as to match the

scale of the Yp and A), 100.0% (51.3%) were within 0.10 (0.01) of the estimates of the model
presented in the main text. The RMSE of the estimates as compared to the estimates of the model
presented in the main text was 0.02. In terms of the estimates of the πk parameters of θθθ , 100.0%
(71.9%) were within 0.10 (0.01) of the estimates of the model presented in the main text. The
RMSE of the estimates as compared to the estimates of the model presented in the main text was
0.01.
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Appendix B: Model Estimates

Dependent
measure

Moderator Moderator
level

Small choice set Large choice set z

Estimate SE Estimate SE

Assortment
choice

Choice set
complexity

Low 1.24 0.38

Choice set
complexity

High −0.03 0.37

Decision goal Low 1.79 0.31
Decision goal High 0.69 0.28

Choice
deferral

No moderator No moderator 0.46 0.73 −0.53 0.74 −2.75

Choice set
complexity

Low 0.31 1.56 1.01 1.56 0.82

Choice set
complexity

High 0.00 1.56 −0.62 1.56 −0.75

Decision task
difficulty

Low 1.58 1.21 2.97 1.36 1.27

Decision task
difficulty

High 2.27 1.10 1.16 1.06 −1.61

Preference
uncertainty

Low 0.99 1.07 2.22 1.11 1.74

Preference
uncertainty

High 0.97 1.07 0.71 1.06 −0.41

Option
selection

No moderator No moderator 0.81 0.39 −0.08 0.38 −3.48

Choice set
complexity

Low −0.02 0.38 0.89 0.38 3.17

Choice set
complexity

High 0.54 0.38 −0.32 0.38 −3.05

Decision task
difficulty

Low −0.18 0.44 0.79 0.45 3.33

Decision task
difficulty

High 0.20 0.44 −0.49 0.44 −2.41

Preference
uncertainty

Low −0.29 0.69 3.33 1.15 3.19

Preference
uncertainty

High 0.18 0.68 0.97 0.67 1.21

Regret No moderator No moderator −1.50 0.40 −3.57 0.70 −3.16
Decision goal Low −7.51 0.53 −4.25 0.59 5.24
Decision task
difficulty

Low −2.17 0.31 −1.97 0.31 0.74

Decision task
difficulty

High −2.01 0.31 −2.78 0.35 −2.48
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Dependent
measure

Moderator Moderator
level

Small choice set Large choice set z

Estimate SE Estimate SE

Satisfaction No moderator No moderator 7.00 0.42 6.45 0.42 −2.87
Decision goal Low 5.27 0.64 6.79 0.64 4.60
Decision goal High 5.67 0.70 6.57 0.70 1.97
Decision task
difficulty

Low 7.68 0.59 7.71 0.59 0.12

Decision task
difficulty

High 7.81 0.59 7.01 0.60 −2.40

Preference
uncertainty

Low 6.17 0.44 6.44 0.44 1.10

Preference
uncertainty

High 6.44 0.46 5.46 0.47 −3.08

Switching
likelihood

Preference
uncertainty

Low 1.27 0.21 1.78 0.23 2.04

Preference
uncertainty

High 1.57 0.22 0.84 0.19 −3.20

Estimates and estimated standard errors of the entries of A. Estimates for the binary dependent
measures (i.e., assortment choice, choice deferral, option selection, and switching likelihood) are
presented on the log odds scale, while estimates for the integer-scale dependent measures (i.e.,
satisfaction and regret) are presented on the one-to-nine scale. Assortment choice measures the
choice of a large versus a small choice set; thus, estimates for the choice of the large choice set
are presented. The z-statistic gives the difference in the estimates for large versus small choice
sets divided by the estimated standard error of this difference. Choice overload occurs when a
dependent measure is lower for large versus small choice sets (or for lower values when the
dependent measure is assortment choice). These estimates are depicted graphically in Fig. 2.
Estimates of θθθ are available in the main text.
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