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Meta-analysis is a well-established statistical technique 
that synthesizes two or more studies of a common phe-
nomenon. Insofar as the studies measure the common 
phenomenon with some degree of error, a meta-analysis, 
which pools the results from the studies via a weighted 
average, will yield a measurement that is on average 
more accurate than that of any individual study. Thus, 
one purpose of meta-analysis is to estimate the average 
effect size in a set of studies.

In some cases, one may wish to move beyond using 
meta-analysis to estimate the average effect size in a set 
of studies to using it to estimate the average effect size in 
some larger population. This poses at least two difficul-
ties that have analogues in single study research. First, 
just as the single study researcher seeking to generalize 
an effect must define the relevant population of individu-
als, the meta-analyst must define the relevant population 
of studies. Second, insofar as the set of individuals exam-
ined in a single study or the set of studies examined in a 

meta-analysis is not representative of this population, 
estimates will be biased.

Publication bias is the term given to concerns over the 
representativeness of any given study or set of studies. 
These concerns date back centuries (Boyle, 1661/1965; 
Dickersin, 2005; Editors, 1909; Ferriar & Simmons, 1792; 
Hall, 1959; Lane & Dunlap, 1978; Sterling, 1959) and 
relate not only to issues surrounding the size, direction, 
and statistical significance of study results but also to 
issues surrounding the availability and accessibility of 
studies, including cost, language, and familiarity. Thus, 
publication bias encompasses any and all biases in the 
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Abstract
We review and evaluate selection methods, a prominent class of techniques first proposed by Hedges (1984) that 
assess and adjust for publication bias in meta-analysis, via an extensive simulation study. Our simulation covers both 
restrictive settings as well as more realistic settings and proceeds across multiple metrics that assess different aspects 
of model performance. This evaluation is timely in light of two recently proposed approaches, the so-called p-curve 
and p-uniform approaches, that can be viewed as alternative implementations of the original Hedges selection method 
approach. We find that the p-curve and p-uniform approaches perform reasonably well but not as well as the original 
Hedges approach in the restrictive setting for which all three were designed. We also find they perform poorly in 
more realistic settings, whereas variants of the Hedges approach perform well. We conclude by urging caution in 
the application of selection methods: Given the idealistic model assumptions underlying selection methods and the 
sensitivity of population average effect size estimates to them, we advocate that selection methods should be used less 
for obtaining a single estimate that purports to adjust for publication bias ex post and more for sensitivity analysis—
that is, exploring the range of estimates that result from assuming different forms of and severity of publication bias.
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set of studies available to the meta-analyst and to 
researchers more broadly.

Although publication bias is typically considered a 
problem only for meta-analysis, it is of course just as 
much of a problem for single study research: A single 
study drawn from a set of biased studies is precisely as 
biased as a meta-analysis of the set of studies. However, 
meta-analysis is advantageous relative to single study 
research in this regard because, unlike single study 
research, it can be used to assess and adjust for publica-
tion bias. Indeed, as reviewed in the invaluable tome by 
Rothstein, Sutton, and Borenstein (2005), vast effort has 
been expended developing various techniques to do 
exactly this.

A prominent class of these techniques are so-called 
selection methods. First proposed by Hedges (1984), 
selection methods assess and adjust for publication biases 
relating to the size, direction, and statistical significance 
of study results.

In this article, we review and evaluate selection meth-
ods via an extensive simulation study that covers both 
restrictive settings, involving rigid publication (or selec-
tion) rules and homogeneous effect sizes, as well as more 
realistic (though still rather idealistic) settings, involving 
more flexible publication rules and heterogeneous effect 
sizes. Our evaluation proceeds across multiple metrics 
that assess different aspects of model performance such 
as estimation accuracy and confidence-interval coverage. 
This type of evaluation is new to the selection methods 
literature and is critical: Proper model evaluation inher-
ently requires the assessment of model performance 
across a variety of settings and metrics because models 
may perform well in some respects but poorly in others. 
In addition, our evaluation is timely in light of two 
recently proposed approaches, the so-called p-curve and 
p-uniform approaches (Simonsohn, Nelson, & Simmons, 
2014; van Assen, van Aert, & Wicherts, 2015), which can 
be viewed as alternative implementations of the original 
Hedges (1984) selection method approach that employ 
different estimation strategies.

We find that the p-curve and p-uniform approaches 
perform reasonably well but not as well as the original 
Hedges (1984) approach in the restrictive setting for 
which all three were designed; this is a direct conse-
quence of the alternative estimation strategies they 
employ. We also find that the p-curve and p-uniform 
approaches are sensitive to deviations from their model 
assumptions and thus perform poorly in more realistic 
settings; in contrast, the Hedges (1984) approach gener-
alizes easily to—and thus variants of it perform well in—
these more realistic settings.

In the remainder of this article, we first provide a brief 
review of selection methods. We then note that it is typi-
cal in behavioral research that studies with results that 

are not statistically significant are published and that 
effect sizes are heterogeneous; this is critical because 
falsely assuming otherwise, as the original Hedges (1984) 
approach and the p-curve and p-uniform approaches do, 
results in a loss of efficiency (i.e., noisier estimates of the 
population average effect size) and bias, respectively. We 
next present our simulation study. Finally, we conclude 
by urging caution in the application of selection meth-
ods: Given the idealistic model assumptions underlying 
selection methods and the sensitivity of population aver-
age effect size estimates to them, we advocate that selec-
tion methods should be used less for obtaining a single 
estimate that purports to adjust for publication bias ex 
post and more for sensitivity analysis—that is, exploring 
the range of estimates that result from assuming different 
forms of and severity of publication bias. We summarize 
our key points and recommendations in Table 1.

Selection Methods

In this section, we introduce selection methods and dis-
cuss several of their benefits. We then provide a review 
of various selection method approaches. In particular, we 
first discuss the early contributions of Hedges (1984) and 
Iyengar and Greenhouse (1988). We then discuss gener-
alizations of these early methods. Finally, we discuss the 
p-curve and p-uniform approaches, which can be viewed 
as alternative implementations of the original Hedges 
(1984) selection method approach that employ different 
estimation strategies. We summarize several selection 
method approaches in Table 2.

Introduction to selection methods

Selection methods are a prominent class of techniques 
that assess and adjust for publication biases relating to 
the size, direction, and statistical significance of study 
results. The statistical model underlying selection meth-
ods consists of two components, a data model and a 
selection model.

The data model describes how the data are generated 
in the absence of any publication bias, and it is generally 
chosen to be equivalent to the data models typically 
employed in behavioral research. For example, when 
interest centers on the difference between two indepen-
dent means, the data model typically specifies, as is com-
mon in behavioral research, that individual-level 
observations are normally distributed with common but 
unknown variance.

The selection model describes the publication pro-
cess, and it can take a wide variety of forms. For exam-
ple, it might specify that (a) only studies with results that 
are statistically significant are published, (b) only studies 
with results that are statistically significant and 
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directionally consistent are published, or (c) studies with 
results that are not statistically significant (or directionally 
consistent) are relatively less likely to be published than 
studies with results that are statistically significant (and 
directionally consistent).

Because the data model and selection model are 
explicitly specified by selection methods, they possess a 
number of principal advantages:

1. They allow identifiability—that is, whether it is 
possible even in principle to estimate the underly-
ing model parameters—to be assessed.

2. They allow estimation to proceed easily via the 
maximum likelihood estimation strategy, which has 
strong theoretical properties (Bickel & Doksum, 
2007; Casella & Berger, 2002), yields standard errors 
and confidence intervals, and allows for hypothesis 
tests of model parameters.

3. They provide a framework that can in principle 
accommodate almost any meta-analytic setting, 
including, for example, heterogeneous effect 
sizes, study-level moderators, and other features 
in the data model as well as highly flexible forms 
of publication bias in the selection model.

4. They can be used to test for, evaluate the extent 
of, examine the sensitivity to, and adjust for pub-
lication bias as specified by the selection model.

Given these benefits, selection methods have been an 
active research area since they were originally proposed 

by Hedges (1984; for an overview, see Hedges &  
Vevea, 2005; Chapter 13 of Schmidt & Hunter, 2014; and 
Jin, Zhou, & He, 2015).

Early selection methods

The original selection method of Hedges (1984) assumes 
that (a) effect sizes are homogenous across studies and 
effect size estimates are normally distributed with 
unknown variance (i.e., so that individual study t statis-
tics are modeled as noncentral t distributed; this data 
model arises from, inter alia, the canonical case in which 
a study follows a two-condition between-subjects design, 
interest centers on the difference between the means of 
the two conditions, and the individual-level observations 
are normally distributed with common but unknown 
variance) and (b) only studies with results that are statis-
tically significant are published. These assumptions for 
the data model and selection model, respectively, imply 
a simple one-parameter likelihood function (i.e., one 
parameter for the data model and zero parameters for the 
selection model). However, the simplicity is deceptive: 
Although, strictly speaking, the applicability of the 
Hedges (1984) approach is limited, it nonetheless con-
tains the two ingredients of a selection method (i.e., a 
data model and a selection model) and shows how to 
combine them. It thus provides a framework that is easy 
to build upon and that can accommodate (at least con-
ceptually) almost any meta-analytic setting.

Table 1. Key Points and Recommendations

1.  Publication bias distorts meta-analytic estimates of both the population average effect size and the degree of heterogeneity. 
Estimates of the former are typically biased upward, thus giving the false impression of large effect sizes, whereas estimates of 
the latter are typically biased downward, thus giving the false impression of homogeneity.

2.  Selection methods are a prominent class of techniques that assess and adjust for publication bias in meta-analysis. They were 
first proposed by Hedges (1984) and have been an active research area ever since.

3.  Two recent proposals, the so-called p-curve and p-uniform approaches (Simonsohn, Nelson, & Simmons, 2014; van Assen, 
van Aert, & Wicherts, 2015), can be viewed as alternative implementations of the original Hedges (1984) selection method 
approach that employ different estimation strategies.

4.  The Hedges (1984), p-curve, and p-uniform approaches are all one-parameter approaches that assume (a) that only studies 
with results that are statistically significant are published and (b) that effect sizes are homogeneous across studies. When these 
assumptions hold, the p-curve and p-uniform approaches perform reasonably well but, as a result of the alternative estimation 
strategies they employ, not as well as the original Hedges (1984) approach.

5.  Falsely assuming that assumptions (a) and (b) hold results in a loss of efficiency (i.e., noisier estimates of the population 
average effect size) and bias, respectively. Consequently, when one or both assumptions fail to hold, the p-curve and  
p-uniform approaches perform poorly, whereas variants of the Hedges (1984) approach perform well.

6.  Both assumptions are nearly always false in behavioral research. Consequently, a simple three-parameter variant of the 
Hedges (1984) approach that relaxes them should be the minimal model considered in applied work. More advanced selection 
methods may also be considered.

7.  Idealistic model assumptions underlie even the most advanced selection methods, and population average effect size estimates 
can be highly sensitive to these assumptions. Consequently, we advocate that selection methods should be used less for 
obtaining a single estimate that purports to adjust for publication bias ex post and more for sensitivity analysis—that is, 
exploring the range of estimates that result from assuming different forms of and severity of publication bias (see Vevea & 
Woods, 2005, and Hedges & Vevea, 2005).
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Iyengar and Greenhouse (1988) generalized the 
Hedges (1984) approach to allow for a less rigid selection 
model for the publication process that accommodates the 
publication of studies with results that both are and are 
not statistically significant. In particular, Iyengar and 
Greenhouse (1988) introduced a weight function 
approach that models the likelihood that a study with 
results that are not statistically significant is published 
relative to the likelihood that a study with results that are 
statistically significant is published. This relative likeli-
hood is estimated from the data rather than fixed at zero, 
as is implicit in the Hedges (1984) approach.

More specifically, Iyengar and Greenhouse (1988) 
considered two relatively simple weight functions for the 
selection model: a one-parameter power function that 
implies the relative likelihood that a study with results 
that are not statistically significant is published increases 
as those results approach statistical significance and a 
one-parameter step function that implies that this relative 

likelihood is constant. A principal benefit of the Iyengar 
and Greenhouse (1988) approach is that both of the 
weight functions they considered accommodate the set-
ting in which all studies are published (i.e., the no publi-
cation bias setting), the setting in which only studies with 
results that are statistically significant are published (i.e., 
the Hedges, 1984, setting), and settings that fall between 
these two extremes. Both weight functions also result in 
a two-parameter likelihood function (i.e., one parameter 
for the data model and one parameter for the selection 
model).

In the discussion and rejoinder surrounding Iyengar 
and Greenhouse (1988), the data model was conceptually 
expanded to accommodate effect sizes that are heteroge-
neous across studies, thus resulting in three-parameter 
likelihood models (i.e., two parameters for the data model 
and one parameter for the selection model). In this article, 
we limit ourselves to comparing more recent approaches 
to these very simple, early selection methods (adopting 

Table 2. Summary of Several Selection Methods

Article(s) Data model Selection model

Hedges (1984) Effect sizes are modeled as homogeneous 
across studies. Effect size estimates are 
modeled as normally distributed with 
unknown variance (i.e., so that individual 
study t statistics are modeled as noncentral  
t distributed).

Only studies with results that are statistically 
significant are published.

Iyengar and Greenhouse (1988) As in Hedges (1984). In the discussion and 
rejoinder, the data model was conceptually 
expanded to accommodate heterogeneous 
effect sizes as in Hedges (1992).

Studies with results that both are and are 
not statistically significant are published 
but with different relative likelihoods. The 
relative likelihood is modeled via one of 
two simple one-parameter functions.

Dear and Begg (1992); Hedges 
(1992)

Effect sizes are modeled as heterogeneous 
across studies via a normal distribution 
with common mean and common variance. 
Effect size estimates are modeled as 
normally distributed with known variance.

Studies with results that both are and are 
not statistically significant are published 
but with different relative likelihoods. The 
relative likelihood is modeled via complex 
multiparameter functions.

Vevea and Hedges (1995) Effect sizes are modeled as heterogeneous 
across studies via a normal distribution with 
mean that is a linear function of study-level 
moderators and common variance. Effect 
size estimates are modeled as normally 
distributed with known variance.

As in Hedges (1992).

Copas (1999); Copas and Li 
(1997); Copas and Shi (2001)

As in Hedges (1992). Studies with results that both are and are 
not statistically significant are published 
but with different relative likelihoods. The 
relative likelihood is modeled via a linear 
function that depends on the estimate of 
the effect size and its standard error.

Simonsohn et al. (2014) As in Hedges (1984). As in Hedges (1984).
van Assen et al. (2015) As in Hedges (1984). As in Hedges (1984).

Note: The estimation strategy employed by all but the last two articles is maximum likelihood. Simonsohn, Nelson, and Simmons (2014) and van 
Assen, van Aert, and Wicherts (2015) employed a distance-based estimation strategy based on the Kolmogorov–Smirnov statistic and, in the most 
recent implementation (van Aert, Wicherts, & van Assen, 2016), the Irwin-Hall distribution, respectively.
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for simplicity the Iyengar & Greenhouse, 1988, one-
parameter step function as the weight function for the 
selection model). Thus, the models we consider have no 
more than three parameters: an effect size parameter, 
which gives the population average effect size; a hetero-
geneity parameter, which gives the degree of heterogene-
ity in the effect sizes; and a weight parameter, which gives 
the likelihood that a study with results that are not statisti-
cally significant is published relative to a study with results 
that are statistically significant. These parameters allow for 
the estimation and testing of (a) effect sizes in a manner 
that adjusts for publication bias; (b) the degree of hetero-
geneity in a manner that adjusts for publication bias; and 
(c) the degree of publication bias. Further, given the par-
simony of the models (i.e., three or fewer parameters), 
they can be well estimated with comparably little data 
(i.e., a relatively small number of studies).

As a technical point, we note that Hedges (1984) and 
Iyengar and Greenhouse (1988) assumed two-sided rather 
than one-sided selection (i.e., the selection model assumed 
that only studies with results that are statistically signifi-
cant—rather than statistically significant and directionally 
consistent—are published). As the difference between 
one-sided and two-sided selection is trivial conceptually 
and requires only the most minor of modifications to the 
likelihood function, we ascribe both the one-sided and 
two-sided versions to the respective authors. However, for 
consistency with Simonsohn et al. (2014) and van Assen 
et al. (2015), we evaluate the one-sided version.

Generalized selection methods

Selection methods can easily be extended to accommo-
date very general data models and selection models. For 
example, although the data models employed by Hedges 
(1984) and Iyengar and Greenhouse (1988) were rela-
tively simple, they have been extended to accommodate 
heterogeneous effect sizes, study-level moderators, and 
other features (Hedges, 1992; Hedges & Vevea, 2005; 
Vevea & Hedges, 1995).

Similarly, the selection model can be made very gen-
eral by building on the weight function approach of 
Iyengar and Greenhouse (1988; Dear & Begg, 1992; 
Hedges, 1992; Hedges & Vevea, 2005; Vevea & Hedges, 
1995). In these models, the weight function specifies the 
relative likelihood that a study is published as a function 
of its one-sided p value. When the direction of the results 
is relevant (or, conversely, is not relevant) for selection, 
the weight function is asymmetric (or, conversely, is sym-
metric) about p = .5. We note the use of the one-sided  
p value in the selection model does not imply or require 
that the original studies conducted one-sided tests; the 
one-sided p value is used solely because it preserves 
information about not only the statistical significance of 
the results but also their direction.

Although the weight functions implicit in the selection 
model of Hedges (1984) and employed in the selection 
model of Iyengar and Greenhouse (1988) were relatively 
simple, they have been extended to accommodate highly 
flexible forms of publication bias (Dear & Begg, 1992; 
Hedges, 1992; Vevea & Hedges, 1995). In particular, Dear 
and Begg (1992), Hedges (1992), and Vevea and Hedges 
(1995) used complex multiparameter weight functions 
that can in principle approximate any functional form. A 
potential advantage of this approach is that the complex-
ity of the weight function can be tuned to the amount of 
data available: When there are relatively few (or, con-
versely, many) studies available, less (or, conversely, 
more) complex weight functions with fewer (or, con-
versely, more) parameters can be used. Nonetheless, 
these approaches can sometimes pose difficulties for esti-
mation and interpretation (Hedges & Vevea, 2005); con-
sequently, one recommendation to which we return in 
the Discussion section is to use these approaches for sen-
sitivity analysis (Copas, 2013; Vevea & Woods, 2005) 
rather than estimation.

We also note there is an alternative class of weight 
function approaches that depend on the estimate of the 
effect size and its standard error rather than on the  
p value (Copas, 1999; Copas & Li, 1997; Copas & Shi, 
2001). In principle, these methods are more flexible 
because the weight function depends on the estimate of 
the effect size and its standard error separately, rather 
than through their ratio as in the p-value approach. In 
practice, it is not always possible to estimate all of the 
parameters of these models simultaneously; further, even 
when it is, the likelihood suggests that there is little infor-
mation about the key parameters. Consequently, these 
methods are mostly used for sensitivity analysis (Copas, 
1999; Copas & Shi, 2001).

Finally, we note that additional work has considered 
parametric forms for the weight function, Bayesian esti-
mation strategies, and other issues (for an overview, see 
Hedges & Vevea, 2005; Chapter 13 of Schmidt & Hunter, 
2014; and Jin et al., 2015).

p-methods

Two approaches that are nearly identical to one another 
and that are based on assumptions identical to those of 
the original Hedges (1984) approach have recently been 
proposed (Simonsohn et al., 2014; van Assen et al., 2015). 
These approaches, the so-called p-curve and p-uniform 
approaches, respectively, return to the simple data model 
and selection model of Hedges (1984) but forgo the maxi-
mum likelihood estimation strategy in favor of alternative 
estimation strategies. In particular, because the distribu-
tion of the p value under the null hypothesis that the 
effect size is equal to the true effect size is uniform, they 
estimate the effect size as that which minimizes the 
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distance between the observed distribution of p values 
(conditional on their being statistically significant, as per 
the assumed selection model) and the uniform distribu-
tion. The two approaches differ only in their distance met-
ric: The p-curve approach uses the Kolmogorov–Smirnov 
statistic as the distance metric, whereas the most recent 
implementation of the p-uniform approach (van Aert, 
Wicherts, & van Assen, 2016, this issue) uses a moment 
estimator based on the Irwin–Hall distribution. Thus, 
rather than being viewed as new methods per se, they can 
be viewed as alternative implementations of the original 
Hedges (1984) selection method approach that employ 
different estimation strategies; thereby, they affirm the 
enduring value of this venerable approach.

Although alternative estimation strategies not based 
on the likelihood function are common in statistics, they 
are typically used in order to circumvent the model 
specification assumptions required by likelihood-based 
estimation strategies (e.g., individual-level observations 
are normally distributed) or to provide robustness to vio-
lations of them. However, given a set of model specifica-
tion assumptions, the maximum likelihood estimation 
strategy is highly principled: It has a number of desirable 
theoretical properties, such as yielding asymptotically 
minimum variance unbiased estimators with normal 
sampling distributions and likelihood functions that can 
be used to test hypotheses about model parameters 
(Bickel & Doksum, 2007; Casella & Berger, 2002). Given 
that the p-curve and the p-uniform approaches require 
model specification assumptions (i.e., in order to com-
pute the distribution of the p value under the null) and 
indeed make the very same assumptions as Hedges 
(1984), we find the benefits of using alternative estima-
tion strategies unclear as they lack these desirable theo-
retical properties.

We also believe that there are a number of other dis-
advantages associated with these alternative estimation 
strategies in this setting. First, as the long literature dis-
cussed in the prior two subsections demonstrates, it is 
conceptually and practically easy to generalize the data 
model and the selection model (e.g., to accommodate 
heterogeneous effect sizes, study-level moderators, and 
the publication of studies with results that are not statisti-
cally significant) when employing a likelihood-based 
estimation strategy; although this is theoretically possible 
under these alternative estimation strategies, doing so 
does not seem nearly as conceptually or practically 
straightforward. Second, as noted, the maximum likeli-
hood estimation strategy naturally yields likelihood val-
ues that can be compared across model variants as well 
as (asymptotic) standard errors and thus confidence 
intervals; on the other hand, the p-uniform approach 
yields only a confidence interval, and the p-curve 

approach yields neither a standard error nor a confidence 
interval (although the bootstrap can in theory be used to 
obtain standard errors and confidence intervals for the 
p-curve approach—or for that matter any other 
approach—this is complicated in practice because [a] the 
bootstrap is numerically intensive, [b] there are often few 
observations available for bootstrapping, [c] the bootstrap 
distribution can be highly non-unimodal, and [d] numeri-
cal instability issues with the lower boundary of the 
p-curve estimation strategy can cause a large fraction of 
bootstrap iterations to estimate improperly at the lower 
boundary; for an illustration, see a histogram of the boot-
strap distribution of the “choice is bad” results presented 
in Simonsohn et al., 2014).

Modeling Considerations

We have posited that a major advantage of the selection 
method approach is that it provides a framework that can 
in principle accommodate almost any meta-analytic set-
ting. Thus, although the original Hedges (1984) method 
assumed that only studies with results that are statistically 
significant are published and that effect sizes are homo-
geneous across studies, these assumptions can be easily 
relaxed, as demonstrated by Iyengar and Greenhouse 
(1988), Hedges (1992), and much subsequent literature 
(see Hedges & Vevea, 2005). In this section, we discuss 
why it is critical to relax these two assumptions: Both are 
nearly always false in behavioral research, and falsely 
assuming otherwise—as not only the original Hedges 
(1984) approach but also the p-curve and p-uniform 
approaches do—results in a loss of efficiency (i.e., nois-
ier estimates of the population average effect size) and 
bias, respectively.

Although studies with results that are statistically sig-
nificant are overrepresented in the published literature 
relative to those with results that are not statistically sig-
nificant (Fanelli, 2010, 2012; Sterling, 1959; Sterling, 
Rosenbaum, & Weinkam, 1995), it is clearly not the case 
that there are no instances of the latter in the published 
literature. Methods such as the Hedges (1984) approach 
and the p-curve and p-uniform approaches, which falsely 
assume that only studies with results that are statistically 
significant are published, must necessarily exclude stud-
ies with results that are not statistically significant in esti-
mation; this results in a loss of efficiency relative to 
methods that can incorporate these studies in estimation 
by assuming more general selection models. This loss of 
efficiency can be dramatic in practice even when studies 
with results that are not statistically significant have a 
small relative likelihood of publication.

In addition, although heterogeneity has long been 
regarded as important across sets of studies that consist 
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of general (i.e., systematic or conceptual) replications, 
there is mounting evidence of and growing appreciation 
for heterogeneity across sets of studies that consist 
entirely of close replications (i.e., studies that use identi-
cal or very similar materials). For example, consider the 
Many Labs Replication Project, which provides 16 esti-
mates of 13 classic and contemporary behavioral research 
effects from 36 independent samples totaling 6,344 sub-
jects (Klein et al., 2014). Each of the 36 laboratories 
involved in the Many Labs project used identical materi-
als, and these materials were administered through a  
web browser in order to minimize heterogeneity. None-
theless, random effects meta-analyses of these studies 
conducted by the Many Labs authors yielded nonzero 
estimates of heterogeneity for all 14 of the effects they 
found to be non-null. Further, 40% of the total variability 
on average across these effects was due to heterogeneity 
(see the I2 statistics reported in Table 3 of Klein et al., 
2014).

In addition, among the 6,344 Many Labs subjects were 
1,000 recruited via Amazon’s Mechanical Turk. The study 
materials were administered to these 1,000 subjects over 
7 unique days, beginning on August 29, 2013, and ending 
on September 11, 2013 (i.e., 7 consecutive days exclud-
ing Fridays, weekends, and the Labor Day holiday). 
Restricting attention to only these subjects and treating 
each unique day as a separate sample yields seven 
extremely close replications of each effect. Again, how-
ever, despite the extreme degree of closeness, heteroge-
neity is nontrivial: Random effects meta-analyses yield 
nonzero estimates of heterogeneity for nine of the 14 
non-null effects, and across these, 21% of the total vari-
ability on average was due to heterogeneity.

Given the degree of heterogeneity present in the Many 
Labs studies (for which the only difference among the 
studies was the location of the laboratory) and in the 
Mechanical Turk subsample of these studies (for which the 
only difference among the studies was the day on which 
the study materials were administered), it seems reason-
able to conclude that some degree of heterogeneity is the 
norm in behavioral research (see also Gelman, 2015; 
McShane & Böckenholt, 2014; McShane & Gal, 2016).

When there is publication bias stemming from the sta-
tistical significance of study results and heterogeneity is 
nonzero (i.e., nearly always), methods such as the Hedges 
(1984) approach and the p-curve and p-uniform 
approaches that falsely assume homogeneity will, by Jen-
sen’s inequality ( Jensen, 1906), produce upwardly biased 
estimates of the population average effect size (for a non-
technical discussion of Jensen’s inequality, see McShane 
& Böckenholt, 2016). This bias can be dramatic in prac-
tice, thus resulting in poor estimates. In addition, 
approaches that falsely assume homogeneity ignore an 

important source of variation and thus produce standard 
errors that are too small and confidence intervals that are 
too narrow, thereby reflecting an overly optimistic level 
of certainty.

Further complicating matters is that estimates of het-
erogeneity from standard meta-analytic methods are gen-
erally downwardly biased when there is publication bias, 
thus giving the false impression of homogeneity. Conse-
quently, it is not only potentially deleterious to rely on 
methods such as the Hedges (1984) approach and the 
p-curve and p-uniform approaches in this setting but also 
difficult, if not impossible, to determine when one faces 
such a situation without using methods that account for 
both heterogeneity and publication bias; nonetheless, as 
we have suggested in the above paragraphs, this setting 
is the norm in behavioral research.

In subsequent sections, we focus on generalizability 
issues surrounding these two factors: the publication of 
studies with results that are not statistically significant 
and heterogeneity. However, we note that there are many 
other important factors to consider accounting for, such 
as study-level moderators, studies with multiple depen-
dent effects of interest, and dependence among studies 
in both the data model and the selection model; we lay 
these aside for the moment and return to them in the 
Discussion section.

Simulation Evaluation

In this section, we discuss our simulation design and eval-
uation metrics. Our simulation covers both restrictive set-
tings, involving rigid publication (or selection) rules and 
homogeneous effect sizes, as well as more realistic (though 
still rather idealistic) settings, involving more flexible pub-
lication rules and heterogeneous effect sizes. Our evalua-
tion proceeds across multiple metrics that assess different 
aspects of model performance such as estimation accuracy 
and confidence-interval coverage. To briefly preview our 
results, the p-curve and p-uniform approaches perform 
worse—and, in the most realistic setting, much worse—
than the maximum likelihood estimation approaches of 
Hedges (1984) and Iyengar and Greenhouse (1988).

Simulation design and evaluation 
metrics

We assume that each simulated study follows a two-con-
dition between-subjects design, that interest centers on 
the difference between the means of the two conditions, 
and that the individual-level observations are normally 
distributed with common but unknown variance. We fur-
ther assume that the sample size per condition in a given 
study is equal across conditions and is uniformly 
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distributed between 25 and 100, that the true effect size 
in a given study as measured on the standardized Cohen’s 
d scale is normally distributed with mean G and standard 
deviation W, and that studies are “published” in a biased 
manner. In particular, we assume that studies are always 
published if the results are directionally consistent with G 
and a two-sided t test is significant at the D = .05 level (or, 
equivalently, if a one-sided t test is significant at the D = 
.025 level) and that they are published with probability q 
otherwise; in practice, this assumption does not require 
that all studies with results that are statistically significant 
are published but simply that their likelihood of publica-
tion relative to those with results that are not statistically 
significant is 1:q.

We vary the number of published studies included in 
the meta-analysis from 20 to 100 in increments of 20 and 
the population average effect size G from .1 to .9 in incre-
ments of .2, and we explore values of W and q that continu-
ously build upon each other. In particular, we first consider 
the case in which (a) only studies with results that are 
statistically significant and directionally consistent are pub-
lished and (b) effect sizes are homogeneous across studies 
(Simulation 1: q = 0, W = 0). We then relax the assumption 
that only studies with results that are statistically significant 
are published (Simulation 2: q > 0, W = 0). Finally, we relax 
the assumption that effect sizes are homogeneous (Simula-
tion 3: q > 0, W > 0). Because these simulations build upon 
one another in a continuous fashion, they are better 
viewed not as multiple distinct simulations but as one sin-
gle simulation with multiple aspects designed to demon-
strate the value of a framework for model generalization.

In our evaluation, we focus on the estimation of G by 
evaluating estimates across five metrics:

1. Bias: the difference between the average estimate 
of G and G. All else being equal, zero bias is 
desirable.

2. RMSE: The root mean square error of the estimate 
of G. This metric measures the accuracy of the esti-
mate; roughly speaking, the absolute difference 
between the estimate of G and G will be less than 
or equal to one RMSE about two-thirds of the time 
and two RMSEs about 95% of the time. Thus, a 
smaller RMSE is more desirable.

3. Log(SE/SD): the average natural logarithm of the 
estimated standard error of the estimate of G 
divided by the standard deviation of the estimates 
of G. This metric measures the accuracy of the esti-
mated standard errors; values above (or, con-
versely, below) zero give, roughly speaking, the 
percentage by which they are too large (or, con-
versely, small), and thus zero log(SE/SD) is 
desirable.

4. Coverage percentage: the percentage of the esti-
mated 95% confidence intervals that cover G; val-
ues above (or, conversely, below) 95% imply 
intervals that are too wide (or, conversely, nar-
row), and thus 95% is desirable.

5. Coverage width: the average width of the esti-
mated 95% confidence intervals; conditional on 
having an accurate 95% coverage percentage, 
smaller widths are more desirable.

Metrics were averaged over 1,000 repetitions of each sim-
ulation setting.

We note that proper model evaluation inherently 
requires the assessment of model performance across a 
variety of settings and metrics because models may per-
form well in some respects but poorly in others. How-
ever, for the evaluation to be sensible, it is critical that the 
settings and metrics are chosen reasonably. Thus, we 
provide some justification for our choice of settings and 
metrics. Our principal simulation parameters, the relative 
likelihood that a study with results that are not statisti-
cally significant is published q and the degree of hetero-
geneity W, were chosen based on theoretical considerations 
that allow us to make predictions about the performance 
of the various methods. As discussed in the Modeling 
Considerations section, when q and W are greater than 
zero, methods such as the Hedges (1984) approach and 
the p-curve and p-uniform approaches that falsely assume 
both to be zero will be inefficient and biased, respec-
tively. The actual parameter value settings of q and W we 
use were, as discussed in the subsections below and as is 
desirable, chosen to span the range typical in behavioral 
research.

Settings for our other key parameters, such as the sam-
ple size per condition in a given study, the number of 
published studies, and G, were also chosen to span the 
range typical in behavioral research. We note that, quali-
tatively speaking, our results are not sensitive to the exact 
distribution assumed for the sample size per condition, 
provided that the sample size per condition is not unrea-
sonably low (and thus outside the range typical in behav-
ioral research). We further note that we did not examine 
the case of G = 0, given that we find it unreasonable both 
generally (Cohen, 1994; Tukey, 1991) and especially in 
the case of one-sided selection examined here, because 
being directionally consistent with G is meaningless when 
G = 0. We finally note that our results should not be par-
ticularly sensitive to other settings, such as the equality of 
the sample size across conditions and the size of the test 
D, provided that they are chosen reasonably.

Our metrics were chosen to assess estimates of G as 
well as estimates of uncertainty (i.e., standard errors and 
confidence intervals) from multiple perspectives. 
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Although these metrics are comprehensive, they are by 
no means exhaustive, and others are certainly possible. 
Nonetheless, we believe that they assess the aspects of 
model performance most germane to readers. As noted, 
metrics were averaged over 1,000 repetitions of each sim-
ulation setting. This was a sufficiently large number of 
repetitions to ensure that simulation error was effectively 
negligible: Simulation error was less than 0.01 (often sub-
stantially less so) for each simulation setting for each 
model for each metric and was always much smaller than 
any important differences among models we discuss. 
Finally, estimation convergence issues were also negligi-
ble: Estimates nearly always converged for all 1,000 rep-
etitions of each simulation setting for each model and 
failed to converge less than 0.05% of the time in the worst 
simulation setting/model pair.

For the reader who wishes to focus on a single metric, 
we suggest focusing on RMSE, given that it evaluates 
models on the criterion that ultimately matters most—
namely, estimation accuracy. We urge such readers to 
also consider coverage percentage, because it evaluates 
interval estimation accuracy and—for the reader inter-
ested in such things—has implications for null hypothe-
sis significance testing.

We also note that simply comparing an estimate to the 
true value, either on a single simulation iteration or on 
average across many simulation iterations, is equivalent 
to focusing solely on bias, and bias is a particularly poor 
metric for evaluating models with respect to estimation 
accuracy (as well as more generally) because biased esti-
mators can and often do perform exceedingly well in 
both theory and practice. Although it may seem counter-
intuitive that an estimator that is systematically wrong on 
average (i.e., biased) would be preferable to one that is 
correct on average (i.e., unbiased), a biased but more 
stable (i.e., lower variance) estimator is very often prefer-
able to an unbiased but less stable one. This holds 
because a slightly biased but very stable estimator will 
typically yield an estimate that is close to the true value 
even if tends to be systematically wrong on average, 
whereas an unbiased but very unstable estimator will 
typically yield an estimate that is far from the true value 
even if tends to be systematically correct on average.

Finally, we note that in our discussion of our simula-
tion results, we generally focus on simulation settings 
with small and medium effect sizes G because this is the 
most interesting setting for selection methods; in con-
trast, when each study has very high power, whether 
because of large effect sizes G or large sample sizes, pub-
lication bias is much less problematic (i.e., because each 
study is very likely to have results that are statistically 
significant). Results for all simulation settings can be 
found in our Supplemental Material available online.

Simulation 1

We begin by investigating the setting of Hedges (1984) in 
which (a) only studies with results that are statistically 
significant and directionally consistent are published and 
(b) effect sizes are homogeneous across studies (i.e., q = 
0 and W = 0, respectively). Because the principled maxi-
mum likelihood estimation strategy employed by the 
Hedges (1984) approach yields an asymptotically mini-
mum variance unbiased estimator and this is a one-
parameter setting, we have strong reason to believe it will 
outperform the alternative estimation strategies employed 
by the p-curve and p-uniform approaches, which were 
also designed for this setting. Thus, the purpose of this 
simulation is to quantify the degree to which it outper-
forms them and investigate whether finite sample issues 
cause it ever to not do so.

We present our results in Figure 1 (for more details, see 
our Supplemental Material). In terms of bias, all methods 
perform similarly: Each has a small negative bias that 
decreases as the effect size G and the number of studies 
increase. This bias is negligible in all simulation settings 
and for all methods. Specifically, it is asymptotically zero 
for the Hedges (1984) and p-curve approaches (because 
they correctly assume a noncentral t distribution as the 
sampling distribution of the individual study t statistics) 
and is asymptotically trivial for the p-uniform approach 
(because it employs an accurate though slightly biased 
normal approximation to the noncentral t distribution).

In terms of RMSE, all methods perform reasonably well, 
but the maximum likelihood selection method approach 
of Hedges (1984) outperforms the p-uniform approach, 
which in turn outperforms the p-curve approach. In par-
ticular, the p-curve approach performs 6% to 15% worse 
and the p-uniform approach performs 4% to 9% worse 
than the Hedges (1984) approach, depending on the simu-
lation setting; further, the p-curve approach performs 10% 
worse and the p-uniform performs approach 7% worse on 
average across all simulation settings. The relative degree 
to which the Hedges (1984) approach outperforms the 
other two approaches decreases as the effect size G 
increases but does not appear to substantially depend on 
the number of studies.

Given that only the Hedges (1984) approach produces 
a standard error, it is the only method that can be evalu-
ated in term of log(SE/SD). As can be seen, the estimated 
standard error is quite on target: It is always within 5% of 
the standard deviation of the estimates of G and is gener-
ally much closer. It appears to improve as the effect size 
G and the number of studies increase.

Both the p-uniform and Hedges (1984) approaches 
produce 95% confidence intervals that are properly cali-
brated (i.e., they have coverage percentage equal to 
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Fig. 1. Simulation 1 results. The figure plots the bias, root mean square error (RMSE), log(SE/SD), cov-
erage percentage, and coverage width of the three methods for three values of G as a function of the 
number of studies. The p-curve and p-uniform approaches perform modestly worse than the maximum 
likelihood selection method approach of Hedges (1984) because of the alternative estimation strategies 
they employ. For more details, see our Supplemental Material.
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95%). However, the intervals produced by the Hedges 
(1984) approach are superior to those produced by the 
p-uniform approach because they maintain 95% coverage 
while being narrower (i.e., they have smaller coverage 
width). Indeed, they tend to be 5% to 16% narrower 
depending on the simulation setting and 10% narrower 
on average across all simulation settings.

In sum, all three methods perform well in this setting 
for which they were designed. However, the Hedges 
(1984) approach performs best, modestly though non-
trivially outperforming the other two approaches.

Before proceeding, we note that when the selection 
model rigidly assumes that only studies with results that 
are both statistically significant and directionally consis-
tent are published (as here), estimation difficulties can 
arise. Though they did not arise in this simulation, for 
completeness, we provide a discussion of these difficul-
ties in Appendix A.

Simulation 2

We now relax the assumption that only studies with 
results that are statistically significant are published; in 
particular, we assume that the likelihood that a study 
with results that are not both statistically significant and 
directionally consistent is published is respectively one-
tenth or one-fourth that of a study with results that are 
statistically significant and directionally consistent (i.e., q =  
.10 or .25, respectively). However, we still assume that 
effect sizes are homogeneous across studies (i.e., W = 0). 
This is the setting of the method of Iyengar and Green-
house (1988).

We note that the value of q chosen does not mean that 
studies with results that are not statistically significant 
make up q × 100% of published studies; rather, it means 
that studies with results that are not statistically signifi-
cant are q × 100% as likely to be published as those with 
results that are statistically significant. The percentage of 
studies with results that are not statistically significant 
among the published studies will vary based on the effect 
size G and can in principle be quite small even when q is 
large (e.g., if G is large). We believe the values of q cho-
sen here span the range typical in behavioral research.

We also note that the data model assumed by all three 
approaches is correct in this setting. However, unlike the 
Iyengar and Greenhouse (1988) approach, the p-curve 
and p-uniform approaches employ a rigid selection 
model that assumes that only studies with results that are 
both statistically significant and directionally consistent 
are published; this selection model is clearly incorrect in 
this setting, thereby causing these approaches to ignore 
data, which in turn causes them to be inefficient (i.e., to 
yield noisier estimates of the population average effect 
size). Given this, the Iyengar and Greenhouse (1988) 

approach should outperform the p-curve and p-uniform 
approaches in this simulation. Therefore, the purpose of 
this simulation is to quantify the degree to which it out-
performs them and to investigate whether finite sample 
issues cause it ever to not do so. We note that the degree 
to which it outperforms them should be larger than in 
Simulation 1, in which efficiency issues were not a con-
cern and all three approaches were correctly specified; 
we also note that it will decrease as the relative likeli-
hood of publication q decreases and the effect size G 
increases, because the former implies more rigid selec-
tion and the latter implies selection is much less 
problematic.

We present our results in Figure 2. We note that y-axis 
limits have been set so that, in some cases, methods that 
perform particularly poorly in a given simulation setting 
are partially excluded from the plot; for more details, see 
Appendix B and our Supplemental Material. The p-curve 
and p-uniform approaches exhibit a negative bias that is 
especially pronounced when both the effect size G and 
the number of studies are small. Further, they yield inac-
curate estimates: The RMSE of these approaches is much 
larger than that of the Iyengar and Greenhouse (1988) 
approach, and this is particularly the case when the effect 
size G is small, when the relative likelihood of publication 
q is moderate, and when the number of studies is small 
(see Appendix B). The inaccurate estimates are a direct 
consequence of the loss of efficiency that results from 
ignoring data.

The Iyengar and Greenhouse (1988) approach pro-
duces reasonable standard error estimates and, along 
with the p-uniform approach, calibrated confidence inter-
vals; nonetheless, the Iyengar and Greenhouse (1988) 
approach is able to achieve calibration with narrower 
intervals (much narrower intervals when the effect size G 
is small).

In sum, the loss of efficiency associated with the 
p-curve and p-uniform approaches results in poor perfor-
mance in this setting. Indeed, the performance of these 
methods is acceptable relative to that of the Iyengar and 
Greenhouse (1988) approach only when the relative like-
lihood of publication q is small (i.e., much below .10, so 
that selection is rigid) or the effect size G is relatively 
large (i.e., so that selection is much less problematic).

Simulation 3

We now relax the assumption that effect sizes are homo-
geneous; in particular, we assume that the true effect size 
in a given study is normally distributed with mean G and 
standard deviation W = .20. This is the setting of the 
method of Iyengar and Greenhouse (1988) expanded to 
accommodate heterogeneity as discussed in the com-
ments to and rejoinder of that article.
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Fig. 2. Simulation 2 results. The figure plots the bias, root-mean-square error (RMSE), log(SE/SD), 
coverage percentage, and coverage width of the three methods for three values of G as a function 
of the number of studies and the relative likelihood of publication q. The p-curve and p-uniform 
approaches perform considerably worse than the maximum likelihood selection method approach of 
Iyengar and Greenhouse (1988) because of loss of efficiency. For more details, see our Supplemental 
Material.
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We note that setting W to .20 means that roughly half 
the total variability on average across the simulated stud-
ies is due to heterogeneity (i.e., I2 | 50%). Thus, accord-
ing to the taxonomy of Pigott (2012), this is a medium 
amount of heterogeneity (she defines low heterogeneity 
as I2 = 25%, medium heterogeneity as I2 = 50%, and high 
heterogeneity as I2 = 75%).

Before proceeding to our results, we note that 
approaches that falsely assume homogenous effects will 
here, by Jensen’s inequality ( Jensen, 1906), produce 
upwardly biased estimates of the population average 
effect size. They will also produce downwardly biased 
estimates of standard errors and confidence intervals. 
Thus, one purpose of this simulation is to quantify the 
degree of these biases.

We present our results in Figure 3. We note that, as for 
the results of Simulation 2, y-axis limits have been set so 
that, in some cases, methods that perform particularly 
poorly in a given simulation setting are partially excluded 
from the plot; for more details, see Appendix B and our 
Supplemental Material. The p-curve and p-uniform 
approaches exhibit a positive bias that is especially pro-
nounced when the effect size G is small. Further, they 
yield inaccurate estimates: The RMSE of these approaches 
is much larger than that of the maximum likelihood selec-
tion method approach.

The maximum likelihood selection method approach 
produces standard error estimates that are too small, and 
this effect is particularly pronounced when the effect size 
G is large and the number of studies is small. This results in 
confidence intervals that have coverage somewhat below 
the nominal coverage percentage. On the other hand, the 
coverage percentage of the intervals produced by the 
p-uniform approach is extremely poor (see Appendix B).

Although we have focused on estimation of G in this 
and prior simulations, we briefly wish to show that selec-
tion also has implications for estimation of heterogeneity. 
Rather than perform a full evaluation, as estimation of 
heterogeneity is not our focus, we simply present the 
average estimate of W in a given simulation setting in Fig-
ure 4 for the selection method as well as a standard meta-
analytic method (for more details, see our Supplemental 
Material). As can be seen, the standard meta-analytic 
approach tends to underestimate heterogeneity on aver-
age when there is selection; however, this result is not 
uniform, and indeed it sometimes demonstrates an 
upward bias. On the other hand, the maximum likeli-
hood selection method approach does reasonably well 
with sufficient data.

In sum, the p-curve and p-uniform approaches per-
form poorly in this setting. On the other hand, the maxi-
mum likelihood selection method approach produces 
reasonable estimates but standard errors that are too 
small (and thus confidence intervals that are too narrow) 

in some settings. As it turns out, one-sided selection com-
bined with heterogeneity can make estimation particu-
larly difficult (see Appendix A). Further, Figure 4 
demonstrates that estimates from standard meta-analytic 
approaches cannot be relied upon to assess heterogene-
ity when there is selection.

We note that these results are not idiosyncratic to the 
value of W presented. Results for W = .10 (i.e., I2 | 25%, or 
low heterogeneity) and W = .40 (i.e., I2 | 75%, or high 
heterogeneity) were qualitatively similar, although the 
performance of the p-curve and uniform approaches 
declined as heterogeneity increased (for more details, see 
our Supplemental Material).

Summary

The p-curve and p-uniform approaches perform reason-
ably well in the setting for which they were designed, 
namely, that of Simulation 1. However, as a result of the 
alternative estimation strategies they employ, they do not 
perform as well as the original Hedges (1984) approach. 
Further, as shown and quantified in Simulations 2 and 3, 
they are sensitive to deviations from their model assump-
tions: When selection is slightly less rigid (i.e., studies 
with results that are not statistically significant are pub-
lished with some small probability) or effect sizes are 
heterogeneous, these methods perform poorly (less rigid 
selection causes them to be inefficient because they 
ignore data, whereas heterogeneity implies, by Jensen’s 
inequality, that they are upwardly biased). In contrast, the 
Hedges (1984) approach generalizes easily to accommo-
date these features, and thus variants of it perform well in 
these more realistic settings.

Given that studies with results that are not statistically 
significant are indeed published and that heterogeneity is 
the norm in behavioral research, we should indeed be 
circumspect about the application of one-parameter 
approaches such as the p-curve and p-uniform approaches, 
as well as the original Hedges (1984) approach—particu-
larly since standard meta-analytic approaches cannot be 
relied on to assess heterogeneity when there is selection. 
At the very least, the simple three-parameter variant of the 
Hedges (1984) approach used in Simulation 3 (i.e., the 
method of Iyengar & Greenhouse, 1988, but accounting 
for heterogeneity) should be the minimal model consid-
ered in applied work.

Discussion

Although selection method approaches to assess and 
adjust for publication biases in meta-analysis have a long 
history that dates back over 30 years, they have yet to be 
subject to an extensive simulation study that covers mul-
tiple continuously related settings and that evaluates 
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Fig. 3. Simulation 3 results. The figure plots the bias, root-mean-square error (RMSE), log(SE/SD), 
coverage percentage, and coverage width of the three methods for three values of G as a function 
of the number of studies and the relative likelihood of publication q. The p-curve and p-uniform 
approaches perform considerably worse than the maximum likelihood selection method approach 
because of heterogeneity. For more details, see our Supplemental Material.
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model performance across multiple dimensions. Such a 
comparative analysis, which can identify the strengths 
and weaknesses of various approaches and can provide 
statistical benchmarks against which new approaches 
can be assessed, is long overdue. Further, its benefits are 
clear: We find that the selection methods originated by 
Hedges (1984) and Iyengar and Greenhouse (1988) and 
extended over the past three decades remain state-of-the-
art in adjusting for publication bias. Although the recently 
proposed p-curve and p-uniform approaches have 
increased awareness about the consequences of publica-
tion bias in meta-analysis, they fail to improve upon, and 
indeed are inferior to, methods proposed decades ago.

Despite the strong performance of selection methods 
in our simulations, we note that the assumptions underly-
ing these methods and simulations are idealistic—even in 
the most realistic setting of Simulation 3. Further, even the 
more general selection methods discussed in the General-
ized Selection Methods subsection above rely on assump-
tions that are likely to be quite idealistic in practice.

Real life data models and selection models are far 
more complicated, sequential, and iterative and involve 
not only authors but also editors and reviewers. For 
example, studies seldom have a single effect of interest; 
typically, studies have multiple effects of interest (e.g., a 
simple effect and an interaction effect in 2 × 2 studies), 
these multiple effects are dependent, and selection is 
likely to be based on the size, direction, and statistical 
significance of these multiple dependent effects jointly. 

In addition, studies are seldom independent. At mini-
mum, the multiple studies of a common phenomenon 
that appear in a typical behavioral research article are 
likely to be dependent; more realistically, there are likely 
to be more complex dependencies among, for example, 
sets of studies conducted by the same authors across 
multiple articles, sets of studies using the same or similar 
materials, and sets of studies administered to the same 
pool of subjects. Further, there are likely multiple sequen-
tial selection mechanisms that operate on the studies that 
appear in a single article because, for example, the stan-
dards of the field may require that the first study reported 
in an article show a convincing simple effect, the second 
moderation, the third mediation, and the fourth applica-
tion to a new domain. Finally, researchers engage in 
questionable research practices and make unintended 
errors in their single study analyses; these impact what 
studies are reported, what is reported from those studies, 
and how it is reported.

In theory, more general selection methods can be 
designed to account for all of these issues. However, the 
population average effect size estimates produced by 
selection methods can be highly sensitive to the data 
model and the selection model assumed (particularly the 
latter), and more realistic data models and selection mod-
els typically cannot be well estimated without a large 
amount of data. Moreover, even if such more general 
selection methods were practically tractable, they would 
still fail to account for issues of selection resulting from 
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Fig. 4. Simulation 3 estimate of heterogeneity. The figure plots the average estimate of heterogene-
ity W of both methods for three values of G as a function of the number of studies and the relative 
likelihood of publication q. The standard meta-analytic approach tends to underestimate heterogene-
ity on average when there is selection, whereas the maximum likelihood selection method approach 
does reasonably well with sufficient data. For more details, see our Supplemental Material.
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the availability and accessibility of studies; such selection 
is (a) likely to be as important or more important than 
selection resulting from the size, direction, and statistical 
significance of study results and (b) far more difficult to 
model (even conceptually).

Thus, we are not optimistic that much more can be 
done under current data collection conditions. As R. A. 
Fisher noted in his 1938 presidential address to the first 
Indian Statistical Congress, “To consult the statistician 
after an experiment is finished is often merely to ask him 
to conduct a post mortem examination. He can perhaps 
say what the experiment died of” (Fisher, 1938, p. 17). In 
the context of meta-analysis, the ex post application of 
selection methods is reasonable if and only if the data 
model and the selection model assumed are reasonably 
accurately specified and there is sufficient data; other-
wise, selection methods simply cannot be relied upon or 
expected to provide accurate estimates.

Consequently, given the idealistic model assumptions 
underlying selection methods and the sensitivity of popu-
lation average effect size estimates to them, we advocate 
that selection methods should be used less for obtaining 
a single estimate that purports to adjust for publication 
bias ex post and more for sensitivity analysis—that is, 
exploring the range of estimates that result from assuming 
different forms of and severity of publication bias. In par-
ticular, one can apply a variety of selection models that 
assume different forms of and severity of selection and 
then examine the variation in the resulting estimates. If 
the estimates are relatively stable regardless of the selec-
tion model assumed, this suggests that publication bias is 
unlikely to drive the unadjusted estimate. On the other 
hand, if the estimates vary considerably depending on the 
selection model assumed, this suggests that publication 
bias may well drive the unadjusted estimate.

We also advocate that the simple three-parameter vari-
ant of the approaches of Hedges (1984) and Iyengar and 
Greenhouse (1988) used in Simulation 3, which allows 
for the publication of studies with results that are not 
statistically significant and accounts for heterogeneity, 
should be the minimal model considered for sensitivity 
analysis in applied work, given that both of these are the 
norm in behavioral research. One-parameter approaches 
such as the p-curve and p-uniform approaches as well as 
the original Hedges (1984) approach, which allow for 
neither, are simply too unrealistic in behavioral research.

To facilitate sensitivity analyses based on the simple 
three-parameter model and more general selection meth-
ods, we note that Vevea and Woods (2005) is an excellent 
reference on how to use selection methods to conduct a 
sensitivity analysis to assess publication bias and further 
note that Hedges and Vevea (2005) provides additional 
examples (see also Copas, 1999; Copas & Shi, 2001; and 
Copas, 2013). We also note that the simple three-param-
eter model and generalizations of it have been 

implemented in the “weightr” package (Coburn & Vevea, 
2016) for R (R Core Team, 2012) and on an easy-to-use 
website available at https://vevealab.shinyapps.io/
WeightFunctionModel/. Conveniently, the default model 
currently implemented in the package and on the web-
site is the simple three-parameter model (it specifies the 
p-value cutpoint in terms of a one-sided test, and thus the 
default cutpoint of .05 corresponds to a two-sided test at 
D = .10; one should change the cutpoint to .025 if one 
wishes it to correspond to a two-sided test at D = .05). 
Finally, we note that we provide our code as well as a 
simple example in our Supplemental Material.

Although we believe that the primary application of 
selection methods should not be obtaining a single esti-
mate that purports to adjust for publication bias ex post, 
we note that there is an alternative perspective. This per-
spective agrees that even the more general selection 
methods discussed in the Generalized Selection Methods 
subsection rely on assumptions that are likely to be quite 
idealistic in practice. However, it emphasizes that they 
nonetheless capture an important aspect of the selection 
process. Thus, it concludes that, particularly in meta-anal-
yses with large numbers of studies, an imperfectly 
adjusted estimate is better than an unadjusted estimate. 
We disagree with none of this in principle but argue that 
the adjustments provided by the more general methods 
are likely still too imperfect to be relied upon for estima-
tion because they fail to account for the complexity of 
real life data models and selection models discussed 
above as well as selection resulting from the availability 
and accessibility of studies.

In closing, we discuss three final issues. First, although 
we have focused on selection methods, we note that 
selection methods are by no means the only class of 
techniques that have been proposed to assess and adjust 
for publication bias in meta-analysis. Other techniques 
include the funnel plot (Sterne, Becker, & Egger, 2005), 
nonparametric and regression-based tests (Begg & 
Mazumdar, 1994; Egger, Smith, Schneider, & Minder, 
1997; Sterne & Egger, 2005), Rosenthal’s fail-safe N 
method and its many variants (Becker, 2005; Rosenthal, 
1979), the trim-and-fill method (Duval, 2005; Duval & 
Tweedie, 2000a, 2000b), and the Precision-Effect Test–
Precision-Effect Estimate with Standard Error (PET-
PEESE) method (Stanley & Doucouliagos, 2014). In 
contrast to selection methods, these alternative tech-
niques do not posit a data model and a selection model—
or any other statistical model—and thus lack many of the 
advantages of selection methods; indeed, the lack of a 
statistical model has been a point of criticism for these 
alternative techniques (see, for example, Becker, 2005). In 
addition, these alternative techniques have yet to be sub-
ject to an extensive evaluation. Without such an evalua-
tion, it is not possible to know in what settings and on 
what dimensions these techniques perform well versus 
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poorly or how their performance compares to that of 
alternative techniques such as selection methods. Unfor-
tunately, designing such an evaluation for these tech-
niques is complicated by the fact that they do not posit 
an underlying statistical model. Further, our caution that 
the ex post application of selection methods is reason-
able if and only if the data model and the selection model 
assumed are reasonably accurately specified and there is 
sufficient data would also seem to apply, mutatis mutan-
dis, for these alternative techniques.

Second, given our belief that meta-analytic estimates of 
population average effect sizes are likely to be inaccurate 
because of selection issues, one may wonder whether we 
ever advocate conducting a meta-analysis. Our answer is 
a resounding “yes” because meta-analysis has much to 
offer beyond estimation of the population average effect 
size. It is useful for cataloguing the various study designs, 
dependent variables, moderators, and other methods fac-
tors used in studies in a given domain. In addition, it 
can—at least for the set of studies examined—quantify (a) 
the average effect size, (b) the degree of heterogeneity 
induced by differences in unaccounted for (and poten-
tially unknown) method factors, and (c) the association 
between study results and accounted for, known method 
factors such as study-level moderators. Importantly, single 
study analyses can provide none of these benefits, so 
meta-analysis, however flawed, is the only option.

Third, we note that the quality of an estimate ultimately 
depends on the quality of the data used to produce that 
estimate as well as the purpose of the estimate. Thus, as 
noted, unadjusted meta-analytic estimates are still reliable 
when one does not seek to generalize to some larger 
population. They are also reliable if, for some reason, 
selection is independent of effect sizes and effect size esti-
mates. Finally, they are reliable when all data are reported, 
as in the Many Labs project (Klein et al., 2014). Fortu-
nately, we expect that practices like those employed by 
the Many Labs authors are becoming much more typical 
in behavioral research. Consequently, we believe that an 
ex ante multipronged preventive approach that includes 
training in statistical reasoning, preregistration of studies, 
use of more powerful study designs, and open data will 
prove superior to—both for meta-analysis and more 
broadly—any ex post statistical approach that attempts to 
adjust for potential biases after it may be too late.

Appendix A

Estimation Issues

In this section, we discuss difficulties with estimating 
selection methods when the selection model rigidly 
assumes that only studies with results that are both statis-
tically significant and directionally consistent are pub-
lished. We note that these difficulties do not apply when 

this extremely rigid one-sided selection model is relaxed 
(for instance, if only studies with results that are statisti-
cally significant—but not directionally consistent—are 
published or if studies with results that are not statisti-
cally significant are published with some probability). 
Consequently, these difficulties are unlikely to be encoun-
tered in practice.

Returning to the one-parameter setting of Hedges 
(1984) that assumes rigid one-sided selection and 
homogenous effect sizes, Hedges and Vevea (2005) 
pointed out that the likelihood function is poorly 
behaved when one observes a single data point that is 
small: It is relatively flat for small positive and negative 
values of G. Further, when this data point is so small that 
it is just barely statistically significant, the likelihood 
increases as G decreases and is unbounded. Clearly, this 
is pathological.

We note that this issue is not in theory limited to only 
a single data point. When the combined effect size from 
multiple data points is small, the likelihood can be rela-
tively flat for small positive and negative values of G or 
can increase monotonically as G decreases. The only 
solution to this problem is to increase precision, either by 
increasing the sample size per study or by increasing the 
total number of studies. However, we note that this is not 
likely to be a problem in practice because (a) a small 
number of studies will generally provide enough preci-
sion to make the likelihood function well behaved and 
(b) this extremely rigid one-sided selection model with 
homogeneous effects rarely if ever holds in behavioral 
research and thus should not be considered.

We also note that this problem holds even if a normal 
distribution is assumed for the observed effects rather 
than a noncentral t distribution and that it is a theoretical 
issue distinct from any numerical issues involved in com-
puting tail probabilities. We further note that, like the 
maximum likelihood estimation strategy employed by 
the Hedges (1984) approach, the estimation strategies 
employed by the p-curve and p-uniform approaches also 
perform pathologically in this setting (van Aert et al., 
2016), presumably as a result of an implicit dependence 
on the likelihood.

Extending to the two-parameter setting that assumes 
rigid one-sided selection and heterogeneous effect sizes 
(i.e., the setting of Hedges, 1984, but accounting for het-
erogeneity), the problem becomes even more intracta-
ble. In particular, there is a near ridge in the likelihood 
function along G and W, which results in pathological 
behavior favoring large negative values of G and large 
positive values of W. This problem actually follows from 
the problem associated with the one-parameter setting. 
In particular, for fixed W, the one-dimensional profile of 
the two-parameter likelihood viewed as a function of G 
is akin to the one-parameter likelihood function (and is 
indeed identical to it for W = 0); however, the 
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pathological behavior of the one-parameter likelihood 
function occurs much more commonly when W is set 
large as compared to when W is set to zero, thus com-
pounding matters. Again, the solution to this problem is 
to increase precision. Also again, this is not likely to be 
a problem in practice because the extremely rigid one-
sided selection model rarely if ever holds in behavioral 
research.

We note that penalized likelihood estimation strategies 
and Bayesian estimation strategies with informative priors 
improve performance in this setting by keeping effect size 
estimates bounded. Indeed, informative priors are particu-
larly appropriate here because the effect size is measured 
on the standardized Cohen’s d scale. Consequently, these 
estimation strategies should be considered in future 
research when the rigid one-sided selection model applies.

Table: Data Points Excluded From Figures 2 and 3

Simulation Metric Method G q Number of studies Value

2 RMSE p-curve .1 .25 20 0.277
2 RMSE p-uniform .1 .25 20 0.443
2 RMSE p-uniform .1 .25 40 0.275

2 Coverage width p-uniform .1 .25 20 1.848

3 Coverage percentage p-uniform .1 .10 20 0.472
3 Coverage percentage p-uniform .1 .10 40 0.196
3 Coverage percentage p-uniform .1 .10 60 0.070
3 Coverage percentage p-uniform .1 .10 80 0.033
3 Coverage percentage p-uniform .1 .10 100 0.009

3 Coverage percentage p-uniform .1 .25 20 0.576
3 Coverage percentage p-uniform .1 .25 40 0.376
3 Coverage percentage p-uniform .1 .25 60 0.185
3 Coverage percentage p-uniform .1 .25 80 0.104
3 Coverage percentage p-uniform .1 .25 100 0.060

3 Coverage percentage p-uniform .3 .10 20 0.553
3 Coverage percentage Selection .3 .10 20 0.866
3 Coverage percentage p-uniform .3 .10 40 0.258
3 Coverage percentage Selection .3 .10 40 0.874
3 Coverage percentage p-uniform .3 .10 60 0.114
3 Coverage percentage p-uniform .3 .10 80 0.042
3 Coverage percentage p-uniform .3 .10 100 0.012

3 Coverage percentage p-uniform .3 .25 20 0.593
3 Coverage percentage Selection .3 .25 20 0.896
3 Coverage percentage p-uniform .3 .25 40 0.330
3 Coverage percentage p-uniform .3 .25 60 0.177
3 Coverage percentage p-uniform .3 .25 80 0.073
3 Coverage percentage p-uniform .3 .25 100 0.043

3 Coverage percentage p-uniform .5 .10 20 0.748
3 Coverage percentage Selection .5 .10 20 0.887
3 Coverage percentage p-uniform .5 .10 40 0.564
3 Coverage percentage p-uniform .5 .10 60 0.455
3 Coverage percentage p-uniform .5 .10 80 0.338
3 Coverage percentage p-uniform .5 .10 100 0.241

3 Coverage percentage p-uniform .5 .25 20 0.737
3 Coverage percentage Selection .5 .25 20 0.893
3 Coverage percentage p-uniform .5 .25 40 0.595
3 Coverage percentage p-uniform .5 .25 60 0.468
3 Coverage percentage p-uniform .5 .25 80 0.327
3 Coverage percentage p-uniform .5 .25 100 0.269

Note: A horizontal line separates unique simulation/metric/G/q combinations. The principal results are that (a) the p-curve and 
p-uniform approaches have poor root mean square error (RMSE) in Simulation 2 when the effect size G is small, when the relative 
likelihood of publication q is moderate, and when the number of studies is small and (b) the p-uniform approach has poor coverage 
percentage throughout Simulation 3.

Appendix B
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