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scored, whereas with 4-second epochs, there are 21,600 ep-
ochs. Thus, the necessity for surgery, time to recover from sur-
gery, and scoring of large numbers of epochs adds expense and 
makes studies of sleep in mice very labor intensive.

We seek an alternative high-throughput strategy that will 
obviate the need for EEG/EMG recording. This strategy can 
be used (1) in studies that evaluate changes in mRNA, protein, 
etc. in response to sleep, wake, and sleep deprivation and (2) 
to screen the large panel of knockout mice that have already 
been created.3

Two approaches to high-throughput phenotyping have al-
ready been proposed.4,5 One approach is based on determining 
inactivity either by electronic beam splits or by video analy-
sis; any duration of inactivity that lasts 40 seconds or more is 
considered sleep. This approach, termed the 40-second Rule, 
has been validated by comparison with manual scores based on 
EEG/EMG recordings in both young4 and old6 C57BL/6J mice. 
The other strategy is based on piezoelectric detection of mouse 
movements by pressure sensors in the floor of the mouse cage; 
analysis of the data recorded by such sensors reveals patterns 
that are characteristic of sleep and wakefulness.5

Although these methods are quite accurate to determine 
wake and sleep, they cannot distinguish non-rapid eye move-
ment sleep (NREM) from rapid eye movement sleep (REM). 
Nonetheless, our video recordings show a subtle signal for 
REM sleep. In particular, the area and aspect ratio of the mouse, 
respectively, increased and decreased when the mouse went 
from NREM to REM sleep (see Figure 1). This, we believe, is 
related to the mouse becoming more atonic in REM sleep.

The goal of this study was, therefore, to determine wheth-
er we could develop an algorithm to identify REM vs NREM 

INTRODUCTION
A major focus of current research in mice is to elucidate gene 

products that (1) regulate sleep and wake, (2) are regulated by 
sleep and wake, or (3) are affected by sleep deprivation. Mul-
tiple strategies are used to identify relevant genes (for review, 
see1). These include the analysis of changes in the transcriptome 
with sleep, wake, and sleep deprivation (for review, see2) as well 
as the use of specific transgenic mice. Transgenic strategies typi-
cally create altered gene function on a C57BL/6J background 
by using selective breeding strategies to minimize the effects of 
genetic background. There are currently large numbers of mice 
available with knockout of specific genes.3 Use of these new 
mouse resources requires evaluation of the effect of knockout of 
a specific gene on sleep and its substages as well as wakefulness.

Currently, this evaluation is performed by assessing chang-
es in the electroencephalogram (EEG) and electromyogram 
(EMG). This technique requires surgery on mice with the 
implantation of electrodes; mice cannot be studied until they 
recover from the surgery. Moreover, scoring of EEG/EMG 
records is labor intensive: if states are assessed in 10-second 
epochs across a 24-hour period, there are 8,640 epochs to be 
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8-pin plastic connector/pedestal (Plastics One, Inc.) and then 
bonded to the skull with dental acrylic. After the bonding agent 
cured, the animals were connected to our signal-amplifier sys-
tem using a connecting cable and swivel contact (Plastics One, 
Inc.) mounted above each cage. All mice were given 10-14 days 
for postoperative recovery and habituation before beginning 
any recording.

EEG and EMG signal were amplified using the Neurodata 
amplifier system (Model M15, Astro-Med, Inc., West Warwick, 
RI). Signals were amplified (2000×) and conditioned using 
the following settings for EEG signals: low cut-off frequency 
(-6dB), 0.3 Hz and high cut-off frequency (-6dB), 30 Hz; for 
EMG signals: low cut-off frequency (-6dB), 10 Hz and high 
cut-off frequency (-6dB), 100 Hz. Signals were digitized at 100 
Hz. All data were acquired and analyzed using Gamma soft-
ware (Astro-Med, Inc.) and converted to European data format 
(EDF) for manual scoring and analysis in the Somnologica sci-
ence software (Embla, Inc., Denver, CO).

WAKE, NREM, and REM sleep were manually scored us-
ing EEG/EMG in 10-second epochs during 24-hour baseline 
recordings. Sleep stages were determined as follows: epochs 
were scored as wake when the EMG amplitude ranged from 
activity slightly higher than baseline during quiet wakefulness 
to higher-amplitude activity during ambulation. EEG amplitude 
was low, with frequencies mostly above 10 Hz. NREM was 
characterized by high-amplitude delta (1-4 Hz). EMG was con-
stant with low-amplitude activity. REM was scored when low-
amplitude rhythmic theta waves (6-9 Hz) predominated, with 
the EMG remaining at baseline levels. Although our goal is to 
replace this manual scoring with an automated video-based sys-
tem, these EEG/EMG-based manual scores will be our “gold 
standard” for comparison because they are currently the most 
widely accepted method for accurately scoring sleep.

Twenty-four hours of data divided into 10-second epochs 
implies 8,640 epochs for each of the 8 mice, giving us a total of 
69,120 epochs that have been manually scored as REM, NREM, 
or WAKE. For each of these epochs, we also have video record-
ings captured at 10 frames per second, giving us 100 frames of 

sleep in mice based on digital video recordings. This is chal-
lenging because REM sleep is a relatively rare state compared 
with NREM sleep and wake and because episodes of REM 
sleep are short. We show that the identification of REM vs 
NREM is possible with reasonable accuracy, and we validate 
this by comparison with EEG/EMG assessments of REM sleep 
in C57BL/6J male mice. This new phenotyping strategy will be 
valuable for studies of molecular change in response to sleep, 
wake, or sleep deprivation and for screening of the recently cre-
ated large number of knockout mice3 to determine if they have 
altered sleep and wake.

ANIMAL STUDIES
One inbred strain of male mice was used in this study: 

C57BL/6J (n = 8, age: 10 to 12 weeks, weight: 18 to 23 g), 
purchased from Jackson Laboratory, Inc. (Bar Harbor, ME). 
Mice were individually housed in Plexiglas cages (4” wide × 8” 
long × 12” high) and maintained on a 12-hour light/dark cycle 
(lights on 0700; 80 lux at the floor of the cage) in a sound-
attenuated recording room, temperature 22°C-24°C. Food and 
water were available ad libitum. Animals were acclimated to 
these conditions for 10-14 days before beginning any studies. 
All animal experiments were performed in accordance with the 
guidelines published in the NIH Guide for the Care and Use of 
Laboratory Animals and were approved by the University of 
Pennsylvania Animal Care and Use Committee.

Mice were implanted with EEG/EMG electrodes un-
der deep anesthesia (intraperitoneal injection of ketamine 
[100 mg/kg] / xylazine [10 mg/kg]). For EEG recordings, 3 
stainless-steel miniature screws (0-80 × 1/16, Plastics One, 
Inc., Roanoke, VA) were placed epidurally in the following lo-
cations: (1) right frontal cortex (1.7 mm lateral to midline and 
1.5 mm anterior to bregma), (2) right parietal cortex (1.7 mm 
lateral to midline and 1 mm anterior to lambda), and (3) a refer-
ence electrode over the cerebellum (1 mm posterior to lambda 
on the midline). Two EMG electrodes were sutured onto the 
dorsal surface of the nuchal muscles immediately posterior to 
the skull. All leads from the electrodes were connected to an 

Figure 1—Mean intraepoch aspect ratio. A time-series plot of mean 
aspect ratio for 1 mouse with colors corresponding to the manually 
scored state (WAKE, non-rapid eye movement (NREM), and rapid eye 
movement (REM) sleep). Subtle differences among the 3 states can be 
detected visually.
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Figure 2—Mouse with tracking ellipse. One frame of video data with 
an ellipse imposed by our tracking software. Using the ellipse, we can 
calculate the size, aspect ratio, and velocity of the mouse.
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in time). Although accounting for such dependencies will likely 
substantially improve model performance, the first-order Mar-
kov assumption imposes several important restrictions. In par-
ticular, it implies that sleep-bout durations are (1) geometrically 
distributed and (2) do not depend on the previous state (e.g., 
the model assumes that WAKE bout lengths are distributed the 
same regardless of whether the previous bout was NREM or 
REM). Prior literature has found both of these assumptions 
untenable,11 and, indeed, the unconditional fits of a geometric 
distribution to our data were quite poor.

Motivated by these observations, we therefore also com-
bined the random forest with a transition-dependent gener-
alized Markov model. This allows the random forest to take 
account of very general time-dependence structures, including 
(1) non-local dependence, (2) bout duration distributions that 
are not geometrically distributed, and (3) bout duration distri-
butions that depend on the previous state.

When fit to data, our model provides an estimate of the prob-
ability that a mouse is in a given sleep state at a given epoch. For-
mally, our model estimates the probabilities  
where i is one of NREM, REM, or WAKE, t indexes the epochs, 
X is the full set of video covariates (X1,…,X8,640), and  is an es-
timate of the model parameters. Our actual prediction  for ep-
och t is taken to be whichever state (NREM, REM, or WAKE) 
has the largest  at epoch t. We note that our estimates  should 
be superior to the probability estimates produced by the basic 
random forests algorithm, which ignores the time-series struc-
ture and predicts Yt  based only on Xt.

While the technical details pertaining to the estimation and 
computation of the models outlined above are beyond the scope 
of this manuscript, they can be found elsewhere.12 Nonetheless, 
we note that the algorithm is fast, requiring only several sec-
onds to estimate using the entire sequence of datapoints (i.e., all 
24 hours worth of data) from a given mouse and only several 
minutes to predict on the entire sequence of datapoints (i.e., 
all 24 hours worth of data) from a different mouse. We also 
note that exploiting time dependencies greatly enhances our 
ability to detect signal in the data, particularly given the inher-
ently high noise level. We will show that our proposed method 
is highly advantageous in terms of predicting REM sleep.

Evaluation
We focus our model evaluation on determining how well 

our model can track (1) the total amount of time spent in REM 
sleep, (2) the number of REM bouts, and (3) the median REM 
bout length using the values derived from EEG/EMG manual 

video data per epoch upon which to build our automated system 
(see Figure 2 for one such frame).

Tracking software was used to calculate, for each epoch with 
time index t, six continuous numerical covariates: the within-
epoch mean of the velocity, aspect ratio, and size of the mouse 
and the within-epoch standard deviation of the velocity, aspect 
ratio, and size of the mouse (where the mouse is approximated 
by a tracking ellipse as shown in Figure 2). For velocity and 
size, we used the natural logarithms of the means and standard 
deviations as covariates. We also had one binary covariate 
which indicates whether or not the light in the cage was turned 
on (lights were on from 0700-1900). Henceforth, we denote the 
vector of our seven covariates for epoch t as Xt.

MATHEMATICAL APPROACHES

Model
The sequential classification problem we face (i.e., the auto-

mated sleep scoring of mice) can be conceptualized by consid-
ering the data as consisting of two components, an “in-sample” 
component and an “out-of-sample” component. The in-sample 
component consists of all of the data from a single mouse, 
namely (1) the sleep states (Y1, Y2,…,Y8,640) where each Yt is 
one of NREM, REM, or WAKE and (2) the video-based covari-
ates (X1, X2,…,X8,640). Using this in-sample data, we estimate 
a model that predicts the collection of Yt from the collection 
of Xt. The out-of-sample data component, in contrast, comes 
from a different mouse and consists of only the video-based 
covariates denoted ( 1, 2,…, 8,640). The goal is to predict the 
corresponding ( 1, 2,…, 8,640) using the estimated model and 
the collection of t.

Our modeling strategy builds on a statistical technique 
known as random forests.7 A random forest is a collection of 
classification (or decision) trees,8 each of which is constructed 
using random subsamples of the data and the covariates. The 
random forest combines the predictions made by each tree by 
allowing them each to “vote” on a sleep state; the probability 
of each sleep state is determined by the fraction of votes it re-
ceives, and the predicted state is the one with the most votes.

Although the random forest algorithm is known to perform 
well in a wide variety of settings, it ignores a key feature of sleep 
data: namely, that the Yt and Xt form sequences in time. This se-
quential nature leads to dependencies in the data. For example, if 
a mouse was awake in the last epoch (i.e., Yt–1 = WAKE), there is 
a high probability it will be awake this epoch (i.e., Yt = WAKE). 
It should be possible to modify the basic random forest to ac-
count for these dependencies and to thus enhance performance.

To do so, we build on previous work, which combines con-
ventional methods with Markov models.9,10 The general struc-
ture of a Markov model is illustrated in Figure 3. The mouse 
starts at time t = 1 in sleep state Y1 (i.e., one of NREM, REM, or 
WAKE), and we observe video-based covariates X1 that depend 
on Y1. Next, the mouse transitions to state Y2, and the process 
repeats itself until time t = T (in our case, T = 8,640).

In our modeling of sleep states in mice, we consider two 
particular Markovian enhancements of the basic random for-
est. First, we combine the random forest with a first-order Mar-
kov model. This enhances the random forest so that it takes 
account of local time dependencies (i.e., those that are nearby 

Figure 3—Markov chain structure.
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This yields an expected amount of time spent in REM for each 
2-hour block.

However, since the raw probabilities  are not 
fully calibrated, we can improve on  by introduc-
ing a threshold tuning parameter Ө. In particular, we let 

. For low values of Ө, the 
model will tend to underpredict , whereas, for high values, 
it will tend to overpredict it.

This notion is formalized in panel (a) of Figure 4, which 
gives the root mean square error (RMSE) between  and 

 for various values of Ө; we also look at the RMSE for the 
first 12 hours (dark) vs the second 12 (light). As can be seen, 
the optimal value occurs around Ө ≈ 0.31, regardless of whether 
one looks at light, dark, or all blocks. In panel (b) of Figure 
4, we plot  averaged across all 8 mice for the optimal 
value of Ө = 0.31. As can be seen, our video-based model’s 
prediction of the amount of time spent in REM sleep quite ac-
curately tracks that based on manual scoring.

The remaining panels of Figure 4 provide additional results 
for total time spent in REM sleep. In panel (c), we give the 
difference between the two methods ± 1 standard deviation; as 
can be seen, all differences lie less than one standard devia-
tion from zero (for full details, see Table S1 of the supplement). 
In panels (d) and (e) of Figure 4, rather than averaging across 
all mice, we look at the algorithm’s performance on two indi-
vidual mice. Not surprisingly, the performance on individual 
mice is not quite as good as when averaged across all mice. 
Nonetheless, the curve for the video-based method tracks the 
contours of the curve for the manual scores. Furthermore, the 
differences between the two curves for individual mice appear 
calibrated with respect to the standard deviations in panel (c): 
67% of the 96 individual 2-hour blocks (i.e., 8 mice × 12 two-
hour blocks) are contained within 1 standard deviation and 94% 
are contained within 2. Nonetheless, this additional variability 
should be taken into consideration when our method is applied 
to individual mice.

A final point worth noting is that the amount of REM sleep 
is small. Fewer than 10 minutes are spent in REM per 2-hour 
block on average across all mice and in aggregate only about 
5% of the time is spent in REM sleep. Furthermore, no sin-
gle mouse spends more than about 15 minutes in REM in any 
2-hour block.

In panels (a) and (b) of Figure 5, we examine how well the 
model performs at predicting the total number of REM bouts 
within a given 2-hour block (for full details, see Table S2 of the 
supplement). We estimate this quantity using an analogue of 
the threshold procedure used for the number of minutes spent 
in REM: (1) when  is larger than  and , we 
label epoch t a REM epoch; (2) using these labels for the 720 
epochs within each 2-hour block, we can calculate the number 
of distinct bouts of REM. Although the model underpredicts 
the number of REM bouts, there appear to be no substantial 
differences between our video-based estimates and those based 
on manual scoring for any particular block. This is even more 
encouraging when one considers the fact that we again used Ө = 
0.31, the value of Ө that was optimal for the number of minutes 
spent in REM. There is no guarantee this value is also opti-
mal for the number of bouts of REM, and, indeed, predictions 
would likely improve if we were to estimate a different value 

scoring as the benchmark. In particular, we break our 24 hours 
worth of data into 12 two-hour blocks, and we examine these 
three metrics averaged across all mice for each of the blocks. 
We also examine how well the model performs at predicting 
total amount of time spent in each of the three states (REM, 
NREM, and WAKE) individually for each mouse.

A novel aspect of our methodology is that our model includes 
a threshold-tuning parameter that takes , the probability of 
REM sleep in epoch t as given by our model, and “converts” 
it into a REM score for epoch t. This parameter can be set by 
the user to adjust the specificity and sensitivity of the model’s 
predictions so that the predictions can take account of the rela-
tive costs of false positives and negatives (which typically vary 
from application to application). We discuss this parameter and 
how to optimally tune it more fully in the Aggregate Measures 
of REM subsection of the Results section.

Although we focus on the summary statistics discussed 
above, we also examine how well our model is able to match 
the gold standard manual scores on an epoch-by-epoch basis. 
Given that manual scoring is currently the most widely ac-
cepted method for accurately scoring sleep, matching manual 
scores to a reasonable degree is important. Nonetheless, there 
are several issues related to epoch-by-epoch matching worthy 
of mention. First, we anticipate that most applications of our 
methodology will focus on estimating the summary statistics 
rather than the epoch-by-epoch scores. While matching man-
ual scores on an epoch-by-epoch basis is a sufficient condi-
tion for estimating the summary statistics, it is by no means 
a necessary one, and accurate estimates of the summary sta-
tistics can be obtained from models that are less precise on an 
epoch-by-epoch basis. Second, epoch-by-epoch manual scores 
are inconsistent: each of our epochs was scored independently 
by two different scorers who disagreed on approximately 5% 
of the epochs,3 with disagreement rates highest among those 
epochs in which the sleep stage was transitional (in such cases, 
an independent third scorer was used to break the tie and to 
determine the “truth”). Consequently, the maximum possible 
epoch-by-epoch agreement rate between any model and manu-
al scores will be below 100%.

RESULTS

Aggregate Measures of REM
We focus our model evaluation on aggregate measures of 

REM sleep. Specifically, we break the 24 hours worth of data 
into 12 two-hour blocks and look at how well the model pre-
dicts the number of minutes spent in REM, the number of REM 
bouts, and the median REM bout length—averaged over all 8 
mice. We also examine the performance at predicting the num-
ber of minutes spent in REM for individual mice. We use the 
values of these quantities derived from the EEG/EMG manual 
scores as our target benchmark.

We first consider the number of minutes spent in REM dur-
ing block j, whose “true value” derived from manual scores we 
denote by . To estimate , we sum the raw probability 
of REM over each of the 720 epochs that make up a 2-hour 
block (i.e., 2 hours is 7,200 seconds or 720 epochs). That is, we 
set  where  is the model estimate of the 
probability of REM at epoch t (i.e., ). 
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full details, see Table S3 of the supplement). As for number 
of REM bouts, we (1) label an epoch as REM when  is 
larger than  and  and (2) calculate the median bout 
length using these labels for the 720 epochs in a given block. 

of Ө specifically for the number of bouts of REM. Nonetheless, 
doing so would also add an extra parameter to the model.

Finally, panels (c) and (d) of Figure 5 show the performance 
of the model at forecasting the median REM-bout length (for 

Figure 4—Minutes spent in rapid eye movement (REM) sleep. In panel (A), we plot the root mean square error of our model’s prediction of the total time 
spent in REM sleep averaged across all mice against the various values of the threshold timing parameter. The black line averages across all blocks, the 
dashed line across “lights out” blocks, and the dotted line across “lights on” blocks. There is a clear minimum at 0.31 and little difference between the minimum 
for the lights off and lights on period. In panel (B), we give the total time spent in REM sleep averaged across all mice for each two-hour block based on 
electroencephalography (EEG; black) and video (gray) for the optimal parameter value of 0.31. In panel (C), we give the difference between EEG and video 
± 1 standard deviation. In panels (D) and (E), we give total time spent in REM sleep for two individual mice for each two-hour block based on EEG (black) 
and video (gray).
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(b), we give the difference between the two methods ± 1  stan-
dard deviation. There are no significant differences between our 
model and the “truth” as given by EEG/EMG data. In panels (c) 
and (d) of Figure 6, rather than averaging across all mice, we 
look at the algorithm’s performance for the two individual mice 
considered in the lower panels of Figure 4. As can be seen, the 
video-based method tracks the manual scores closely with no 
major divergences when evaluated both in aggregate across all 
mice and for individual mice.

In Figure 7, we provide the same plots but for WAKE (for 
full details, see Table S5 of the supplement). The model’s esti-
mates of time spent awake track the manual scores extremely 
well again, with no major divergences from the manual scores. 
This again holds both at the aggregate and individual level.

Epoch-by-Epoch Scoring Evaluation
Though our principal focus is on estimating measures of REM 

sleep—such as time spent in REM, number of REM bouts, and 
median REM bout duration—we also examined whether our 
algorithm could replicate the manual scores on an epoch-by-ep-
och basis. In particular, our epoch-by-epoch scoring evaluation 
directly compares the performance of 5 different methods: (1) 

The model consistently overpredicts the median bout length by 
about 20-30 seconds (2-3 epochs). This is the mirror image of 
the model’s modest underprediction of number of bouts (since 
number of bouts times median bout length is roughly equiva-
lent to total time spent REM). Again, we used Ө = 0.31 here, 
and, although predictions would likely improve if a value of Ө 
were specifically estimated for the median bout length, doing so 
would add yet another parameter to the model.

Aggregate Measures of NREM Sleep and Wake
Although our primary focus is how well our model esti-

mates REM sleep, we also provide data on the estimation of 
both NREM and WAKE amounts. We again do so using the 
value Ө = 0.31 for our threshold tuning parameter. That is, we 
set  and 
where  and Ө = 0.31 (normalization by  ensures that 
the total time spent in all states sums to the proper value of two 
hours per block).

In Figure 6, we provide the analogue of Figure 4 but for 
NREM sleep (for full details, see Table S4 of the supplement). 
Panel (a) gives the total time spent in NREM sleep averaged 
across all mice based on EEG (black) and video (gray). In panel 

Figure 5—Number of rapid eye movement (REM) bouts and median REM bout length for the optimum threshold of 0.31. In panel (A), we give the number 
of REM bouts averaged across all mice for each 2-hour block based on electroencephalography (EEG; black) and video (gray). In panel (B), we give the 
difference between EEG and video ± 1 standard deviation. In panel (C), we give the median REM bout length in minutes averaged across all mice for each 
2-hour block based on EEG (black) and video (gray). In panel (D), we give the difference between EEG and video ± 1 standard deviation.
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sample so as to minimize the error rate with respect to the gold 
standard. An additional point worth noting about the 40-sec-
ond Rule is that it can only distinguish sleep from wakefulness, 
whereas all other methods considered can distinguish among 
REM, NREM, and wakefulness.

Before trying to discriminate REM from NREM, we first 
consider the simpler 2-state problem of forecasting SLEEP 
vs WAKE. The “true” score for an epoch is SLEEP if the 
manual scorers scored it as REM or NREM, and it is WAKE 
otherwise (as mentioned earlier, when the two manual scor-
ers disagreed, an independent third scorer was used to break 
the tie and determine the “truth”). The various classification 
methods are then trained using this 2-state SLEEP/WAKE 
score as the response.

We declare an epoch to be in error if a given method classi-
fies the epoch as something other than the “true” score and pres-
ent the error rates in the second column of Table 1. As can be 
seen, one can achieve error rates lower than 10%. Although the 
40-second Rule performs well, this method can be defeated by 
models that account for the additional information beyond ve-
locity which is present in the video data. Indeed, the best overall 
error rate of 8.8% is achieved by our RF+TDGMM method; 

multinomial logistic regression, (2) random forests, (3) random 
forests combined with a first-order Markov model (RF+1MM), 
(4) random forests combined with a transition-dependent gen-
eralized Markov model (RF+TDGMM), and (5) the so-called 
“40-second Rule.”4 The fourth method, RF+TDGMM, is our 
method, which we have been examining thus far. The second 
and third represent various simplifications of it. Finally, the first 
and fifth are more common in the literature.

We also examine the “error rate” for the gold standard of 
manually scored EEGs. In particular, we declare the gold stan-
dard to be in error if the two original scorers scored the same 
epoch differently.

Before proceeding, we note the error rates for four of the 
five of the methods are completely “out of sample” in the sense 
that the models are tuned and fit for each mouse and then ap-
plied and evaluated on different mice. The only exception is the 
40-second Rule. This algorithm considers a mouse “inactive” 
in a given 10-second epoch if the mean intraepoch velocity is 
less than 3 pixels per second; it then rules a mouse asleep when 
there are four or more consecutive inactive epochs. A single 
parameter (i.e., 40 seconds/4 epochs as opposed to some oth-
er multiple of 10 seconds/1 epoch) has been optimized in the 

Figure 6—Minutes spent in non-rapid eye movement (NREM) sleep for the optimum threshold of 0.31. In panel (A), we give the total time spent in NREM 
sleep averaged across all mice for each 2-hour block based on electroencephalography (EEG; black) and video (gray) for the optimum threshold value. In 
panel (B), we give the difference between EEG and video ± 1 standard deviation. In panels (C) and (D), we give total time spent in NREM sleep for two 
individual mice for each 2-hour block based on EEG (black) and video (gray).
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Our second evaluation considers the 3-state problem (i.e., 
REM vs NREM vs WAKE), and we present our results in the 
third through fifth columns of Table 1 (since the 40-second Rule 
can only discriminate sleep from wakefulness but not REM 
from NREM, it is listed as NA in these columns). This problem 
is much more difficult for classification methodologies since 
they now must choose among three alternatives rather than two. 
Further complicating this difficulty is the fact that the REM oc-
curs only about 5% of the time and looks somewhat similar to 
NREM in terms of video covariates. Consequently, the overall 
error rate for each method is higher in the third column vs the 
second column of the table.

In addition to this overall error rate, which is determined as 
outlined above, we also consider the false positive and false 
negative rate for REM, which is of special interest. Again, us-
ing the manual scores as “truth” (with ties broken by an inde-
pendent third scorer when necessary), an epoch is classified as 
a REM false positive if the classification method declares it to 
be REM but the manual scorer does not; the REM false posi-
tive rate is thus the number of such epochs divided by the total 
number of epochs declared to be other than REM by manual 
scoring. Similarly, an epoch is declared to be a REM false nega-
tive if the manual scorers score it as REM but the classification 

this compares favorably to the 4.8% disagreement rate among 
manual scorers.

Figure 7—Minutes spent in WAKE for the optimum threshold of 0.31. In panel (A), we give the total time spent in WAKE averaged across all mice for each 
2-hour block based on electroencephalography (EEG; black) and video (gray) for the optimum threshold value. In panel (B), we give the difference between 
EEG and video ± 1 standard deviation. In panels (C) and (D), we give total time spent in WAKE for two individual mice for each 2-hour block based on EEG 
(black) and video (gray).
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Table 1—Error rates, in percentage, for various methods

Method
Two-State 
Error Rate

Three-State
Error Rate REM FP REM FN

Logistic Regression 9.7 14.9 1.2 95.3
Random Forests 10.4 16.2 1.9 90.9
RF+1MM 8.9 24.7 15.9 53.0
RF+TDGMM 8.8 23.3 14.0 54.2
40-second Rule 10.1  NA  NA  NA
Manual Scores 4.8 5.8  NA  NA

The first column gives the methodology, the second column gives the 
overall error rate on the two-state SLEEP/WAKE problem, and the third 
through fifth columns give, respectively, the overall error rate, the rapid 
eye movement (REM) false positive rate, and the REM false negative rate 
on the three-state non-REM (NREM)/REM/WAKE problem. RF+1MM 
denotes the random forest combined with a first-order Markov model 
whereas RF+TDGMM denotes the random forest combined with the 
transition-dependent generalized Markov model.
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lecular level could be affected by the recent surgery and the 
insertion of foreign objects into the mouse skull. A second ap-
plication of our procedure is for high-throughput phenotyping, 
something that is increasingly important for studying the large 
number of knockout mice that are now available.3

Currently, the only other automated approach being applied 
is assessment of mouse behavior by piezoelectric data.5 This 
method measures pressure changes in the floor of the mouse 
cage produced by movement. There are highly variable signals 
during wakefulness as the mouse moves around; signals during 
sleep reflect breathing. It is conceivable that the piezo technol-
ogy could also identify REM sleep because breathing in REM 
sleep is more irregular than in NREM sleep.13 At present, how-
ever, this possibility has not been assessed.

The sensitivity and specificity of video-based methods to es-
timate sleep and its substages might be improved if the mouse 
behavior was observed by video not only from above but also 
from the side. A 3-dimensional assessment of the mouse using 
high-resolution video would likely improve assessment of its 
behavior, including the problem addressed here (i.e., identify-
ing NREM and REM sleep). Such a system would likely be 
able to determine breathing, as is possible with piezo, as well as 
the small twitches that occur during REM sleep. Video analysis 
also provides the opportunity to identify other behaviors, and it 
is likely that analytic strategies could be developed to study a 
whole range of mouse behaviors.

In our studies, we used 10-second epochs to score wake and 
the stages of sleep. We did so because (1) this is the most com-
monly used epoch length for scoring of behavioral state4 and 
(2) the original papers assessing behavioral state by non-EMG/
EMG based approaches used this epoch length.4,5 Behavioral 
states of wake and sleep can, however, occur in quite short epi-
sodes, and, hence, examining in detail the architecture of sleep 
(bout length) requires scoring in 4-second epochs.11,14 It is con-
ceivable that if we had used 4-second epochs in this study, we 
might have found better agreement with bout lengths, etc. Fu-
ture studies need to assess the impact of different epoch lengths 
on agreement between video and EEG analysis.

Epoch lengths aside, there are several differences between 
the results for time spent in REM sleep on one hand and num-
ber of bouts, bout length, and epoch-by-epoch scores on the 
other hand. First, there was a methodological choice: since our 
focus was on the time spent in REM, we tuned our parameter 
Ө to that quantity, whereas for the latter we either fixed it at 
the value that was optimal for time spent in REM (number of 
bouts and bout length) or at the default of one (epoch-by-ep-
och scoring). Future studies focusing on these metrics should 
consider tuning our method’s predictions specifically for them. 
Second, beyond modeling choices, there are fundamental dif-
ferences between time spent in REM and the other metrics. The 
expected time spent in REM does not require the conversion 
of a model’s probabilities for each state at each epoch into a 
predicted sleep state for that epoch; rather, these probabilities 
can be summed across all epochs, yielding the expected time 
in the state. On the other hand, computing epoch-by-epoch 
scores, number of bouts, and bout length requires the conver-
sion of these probabilities into sleep scores on an epoch-by-
epoch basis. This fundamental difference underlies the varying 
results observed. Finally, there is a third difference that applies 

method does not; the REM false negative rate is the number of 
such epochs divided by the total number of epochs scored as 
REM by the manual scorers.

The table reveals what is already known: REM is difficult 
to classify correctly, with REM false positive and false nega-
tive rates that are much higher than the overall error rates. The 
challenge here is to discover a method with any power to de-
tect REM sleep. That is, there is an inherent trade-off between 
(1) obtaining a low REM false negative rate accompanied by 
a higher overall and REM false positive rate or (2) obtaining 
lower overall and REM false positive rates while having a high 
REM false negative rate. Since high REM false negative rates 
mean our models have little or no power to detect REM, we 
prefer to err on the side of (1) rather than (2).

Indeed, logistic regression and random forests have the best 
overall error rates and low REM false positive rates, but this 
is because they largely ignore the REM state (i.e., they very 
rarely classify an epoch as REM) leading to extremely high 
REM false negative rates. On the other hand, our RF+TDGMM 
methodology is able to achieve a good balance relative to other 
methods: it has a REM false negative rate that is much lower 
than the competitor models while remaining competitive on 
both the overall error rate and the REM false positive rate. By 
accounting for the time dependence of the data, our procedure 
is able to capture a greater proportion of the REM signal. Fur-
thermore, by retaining a reasonable false positive rate relative 
to the other methods, our model does not sacrifice specificity in 
order to gain substantial improvements in sensitivity.

In sum, our RF+TDGMM methodology can detect REM 
sleep in video data. In achieving a lower REM false negative 
rate (i.e., actually detecting REM), it does have a commensu-
rately higher overall and REM false positive rate as compared 
with methods such as logistic regression and random forests 
which tend to ignore the REM state. Finally, as demonstrated 
in the previous subsections, the RF+TDGMM can be combined 
with a threshold-tuning parameter to provide accurate assess-
ments of aggregate measures of sleep and wakefulness such as 
the amount of time spent in REM sleep over 2-hour blocks.

DISCUSSION
In this study, we demonstrate that there is signal in video re-

cordings of mice that is capable of distinguishing NREM from 
REM sleep. There are subtle changes in the area and shape of 
the mouse as it transitions from NREM to REM sleep, likely as 
a result of the atonia of REM sleep. Although REM sleep is a 
relatively rare state, as compared with NREM and WAKE, our 
methodology can provide reasonable estimates of it. This new 
methodology extends previous approaches4,5 that do not require 
EEG/EMG recording to now differentiate REM from NREM as 
opposed to merely SLEEP from WAKE.

This new method has several applications to which it can 
be applied immediately (i.e., with no further estimation of the 
model parameters including the threshold parameter). First, in 
studies in which mRNA changes or protein changes with sleep 
and wake are being assessed, this approach is much more cost-
effective for estimating sleep states. EEG/EMG recording re-
quires surgical implantation of electrodes, time to recover from 
surgery, and labor-intensive manual scoring of EEG/EMG re-
cordings. There is, moreover, a concern that results at the mo-
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to number of bouts and bout length. When long stretches of 
REM are briefly interrupted (e.g., an epoch or two of NREM or 
WAKE surrounded on either side by many epochs of REM), the 
model’s estimates of number of bouts and bout length—assum-
ing it cannot detect these brief interruptions—will be strongly 
negatively impacted whereas there will be little impact on time 
spent in REM. Despite this major difference, our method is still 
quite competitive at estimating these more difficult quantities.

The application of the video methodology will be in unin-
strumented mice (i.e., mice without EEG/EMG headstages). 
It is conceivable that the changes in shape (i.e., aspect ratio) 
and area as the mouse transitions from NREM to REM sleep 
are sufficiently different in uninstrumented mice that the model 
presented here (which was fit to data from instrumented mice) 
will be inaccurate on uninstrumented mice. We believe that this 
is unlikely for two reasons. First, the cable connected to the 
mouse’s head is carefully counterbalanced so that the mouse 
moves freely and there is no excessive force on the head; thus, 
it seems unlikely that the cable will result in different changes 
in shape and area as the mouse becomes more atonic in REM 
sleep. Second, it is the changes in aspect ratio and area that are 
most important for differentiating NREM from REM sleep; the 
absolute magnitudes of these variables are of secondary impor-
tance, and, indeed, they vary from mouse to mouse. Although 
it seems that the need for instrumentation will therefore not af-
fect the accuracy of our approach, the question is ultimately 
unanswerable, since validation requires EEG/EMG recordings; 
such recordings, in turn, require some form of instrumentation, 
whether by the methodology used here or by telemetry (which 
also could potentially alter mouse shape and area).

In conclusion, this study shows that video analysis can dis-
tinguish REM from NREM sleep in mice. Future elaborations 
of this technological approach could lead to further improve-
ments in these estimates. Thus, high-throughput phenotyping of 
sleep and wake in mice is feasible and will facilitate studies of 
the role of specific genes using the large number of mice with 
knockout of specific genes that are more available3 and investi-
gation of chemical libraries to determine compounds that affect 
sleep and wake, as has been done in zebra fish.15
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Supplement to “Assessing REM Sleep in Mice Using Video Data”

In this supplement, we present tables detailing the data plotted in Figures 4a and 4b (Table

S1), Figures 5a and 5b (Table S2), Figures 5c and 5d (Table S3), Figures 6a and 6b (Table

S4), and Figures 7a and 7b (Table S5) of the main text.

In Table S1, we present the mean and standard deviation of the number of minutes spent in

REM sleep in each two hour block (column one) across all eight mice for both EEG/EMG

manual scores (columns two and three) and for our video-based model (columns four and

five). We also give the mean and standard deviation of the difference between manual scores

and the model across all eight mice (columns six and seven).

Table S2 presents the same information as Table S1 but for the number of REM bouts rather

than the number of minutes spent in REM sleep. Table S3 presents the same information

but for the median REM bout length. Table S4 presents the same information but for the

number of minutes spent in NREM sleep. Table S5 presents the same information but for

the number of minutes spent in WAKE.

1
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Table S1: Minutes Spent in REM Sleep for the Optimum Threshold θ = 0.31.

Block
EEG Video Difference

Mean SD Mean SD Mean SD
7AM - 9AM 3.65 4.12 3.76 4.03 -0.11 2.68
9AM - 11AM 3.94 4.82 4.15 4.84 -0.22 3.16
11AM - 1PM 7.63 4.94 6.59 4.91 1.04 2.45
1PM - 3PM 7.23 2.58 5.82 2.75 1.41 3.36
3PM - 5PM 9.04 2.61 7.19 4.09 1.85 2.47
5PM - 7PM 3.83 3.18 3.61 2.39 0.22 3.86
7PM - 9PM 2.92 2.95 5.27 5.43 -2.35 4.08
9PM - 11PM 5.54 3.11 6.38 4.07 -0.84 2.09
11PM - 1AM 6.90 2.99 7.17 5.17 -0.27 4.26
1AM - 3AM 6.98 3.33 7.41 3.81 -0.43 5.61
3AM - 5AM 6.17 5.25 6.40 5.95 -0.23 7.26
5AM - 7AM 5.63 4.74 5.61 4.16 0.02 4.01

We give the total time spent in REM sleep averaged across all mice for each two hour block for EEG and
video assessments. We also give the standard deviation of each, their difference, and the standard deviation
of the difference.
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Table S2: Number of REM Bouts for Threshold θ = 0.31.

Block
EEG Video Difference

Mean SD Mean SD Mean SD
7AM - 9AM 2.25 2.43 1.25 1.04 1.00 2.00
9AM - 11AM 3.13 4.02 1.38 2.13 1.75 3.62
11AM - 1PM 5.75 3.28 2.63 4.27 3.13 3.91
1PM - 3PM 5.63 1.92 3.13 3.64 2.50 4.54
3PM - 5PM 6.63 3.42 2.63 3.66 4.00 3.25
5PM - 7PM 3.25 2.25 1.75 2.55 1.50 3.96
7PM - 9PM 2.63 2.62 2.88 3.23 -0.25 2.05
9PM - 11PM 4.50 3.21 3.25 3.37 1.25 3.41
11PM - 1AM 5.63 1.92 2.88 2.95 2.75 1.98
1AM - 3AM 6.13 2.80 4.00 3.34 2.13 5.08
3AM - 5AM 6.13 3.91 3.25 3.54 2.88 6.79
5AM - 7AM 5.25 4.33 2.38 3.02 2.88 2.42

We give the number of REM bouts averaged across all mice for each two hour block for EEG and video
assessments. We also give the standard deviation of each, their difference, and the standard deviation of the
difference.
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Table S3: Median REM Bout Length for Threshold θ = 0.31.

Block
EEG Video Difference

Mean SD Mean SD Mean SD
7AM - 9AM 1.60 0.27 1.43 0.84 -0.04 1.24
9AM - 11AM 1.21 0.42 1.02 0.37 0.19 0.89
11AM - 1PM 1.30 0.43 1.35 0.61 -0.12 0.77
1PM - 3PM 1.27 0.22 1.63 0.45 -0.42 0.53
3PM - 5PM 1.39 0.64 1.71 0.65 -0.28 1.20
5PM - 7PM 0.95 0.30 1.60 0.72 -0.25 0.68
7PM - 9PM 1.03 0.41 1.92 1.30 -0.88 1.53
9PM - 11PM 1.42 0.40 1.67 1.49 -0.28 1.43
11PM - 1AM 1.10 0.16 1.96 0.35 -0.82 0.45
1AM - 3AM 1.06 0.29 1.63 0.62 -0.61 0.58
3AM - 5AM 0.83 0.29 1.33 1.06 -0.49 1.28
5AM - 7AM 0.96 0.62 1.32 0.32 -0.37 0.64

We give the median REM bout length in minutes averaged across all mice for each two hour block for EEG
and video assessments. We also give the standard deviation of each, their difference, and the standard
deviation of the difference.
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Table S4: Minutes Spent in NREM Sleep for Threshold θ = 0.31.

Block
EEG Video Difference

Mean SD Mean SD Mean SD
7AM - 9AM 38.60 17.49 33.83 23.22 4.77 10.80
9AM - 11AM 33.56 29.49 33.28 32.71 0.28 6.70
11AM - 1PM 60.90 25.95 58.85 32.88 2.05 9.39
1PM - 3PM 59.33 15.41 52.52 24.64 6.81 16.30
3PM - 5PM 71.29 15.40 67.40 21.72 3.89 10.93
5PM - 7PM 40.96 18.22 42.98 17.63 -2.02 9.95
7PM - 9PM 37.52 27.86 32.20 24.25 5.32 9.66
9PM - 11PM 55.21 29.25 48.75 29.52 6.46 12.33
11PM - 1AM 59.85 24.03 57.83 25.78 2.02 3.95
1AM - 3AM 64.08 21.27 62.25 21.59 1.83 7.31
3AM - 5AM 59.48 18.10 56.37 27.37 3.11 14.70
5AM - 7AM 51.31 27.64 51.81 27.52 -0.50 4.57

We give the total time spent in NREM sleep averaged across all mice for each two hour block for EEG and
video assessments. We also give the standard deviation of each, their difference, and the standard deviation
of the difference.
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Table S5: Minutes Spent in WAKE Sleep for Threshold θ = 0.31.

Block
EEG Video Difference

Mean SD Mean SD Mean SD
7AM - 9AM 76.08 21.27 80.74 26.62 -4.66 10.87
9AM - 11AM 82.50 33.80 82.56 37.07 -0.06 6.53
11AM - 1PM 51.48 30.45 54.56 37.23 -3.09 8.29
1PM - 3PM 53.44 17.31 61.66 24.77 -8.22 15.43
3PM - 5PM 39.67 16.97 45.41 24.51 -5.74 12.31
5PM - 7PM 75.21 20.36 73.41 18.49 1.80 9.66
7PM - 9PM 79.56 30.50 82.53 28.09 -2.97 7.86
9PM - 11PM 59.25 32.21 64.87 32.40 -5.62 10.99
11PM - 1AM 53.25 26.81 55.00 28.93 -1.75 5.98
1AM - 3AM 48.94 24.04 50.34 21.32 -1.40 4.89
3AM - 5AM 54.35 21.27 57.23 30.86 -2.87 14.76
5AM - 7AM 61.40 31.13 60.91 29.91 0.48 4.35

We give the total time spent in WAKE averaged across all mice for each two hour block for EEG and video
assessments. We also give the standard deviation of each, their difference, and the standard deviation of the
difference.


