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1 Introduction

We heartily congratulate Bartolucci, Farcomeni, and Pennoni for their review of latent
Markov (LM) models (Bartolucci et al. 2014). Not only have they provided a succinct
and thorough guide that will benefit researchers seeking to employ LM models for
many years to come, but they also have offered their suggestions on a number of further
developments to extend the basic LM framework that provide direction for future
research. In this comment, we would like to pick up on the suggested developments
concerning more flexible temporal structures by highlighting two approaches that have
proved useful in related domains; we do not view this as criticism of the proposed LM
framework but rather as extensions of the review that are advantageous in terms of
parsimony and scalability.

2 Parsimonious extensions of the first-order model

Bartolucci et al. (2014) note that the assumption that the LM model is first-order can
sometimes be too restrictive, citing the case where the holding time in one or more
states is not memoryless (i.e., geometric) as required by the first-order Markov model.
They suggest generalizing the basic first-order Markov model to higher orders to allow
for memory. A challenge with this approach, however, is that the number of parameters
explodes as one moves from first-order to higher-order Markov models.
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An approach that has been developed to deal with this challenge is the generalized
Markov (GM) model of McShane et al. (2013). The GM model accommodates non-
memoryless (i.e., non-geometric) holding times whilst remaining computationally
feasible, parsimonious, and easily estimable by assuming parametric holding time
distributions for each state. The key to this approach involves embedding the GM
chain on the original state space into a first-order Markov chain on an augmented state
space. While the augmented state space is much larger than the original state space,
the augmented parameter space associated with the augmented state space is quite
parsimonious (e.g., the entries in the transition probability matrix of the augmented
state space are mostly zeroes).

The setting of McShane et al. (2013) was similar to the LM setting in that the goal
was to model a response Y given covariates X. However, in their case there were no
latent (or hidden) states U; instead, a GM model was assumed for Y and the goal
was to predict unknown Y out- of-sample given covariates X [in their case Y was a
scalar categorical response variable with three levels so that » = 1 in the notation of
Bartolucci et al. (2014)].

To generalize the GM model to the LM setting, the formulation presented in Section
4.1.2 of Bartolucci et al. (2014) would require only a few minor adjustments. First,
the model for the initial probabilities would remain the same. Second, the model for
the transitions would remain the same except that there would be no self-transitions.
Third, self-transitions would be governed instead by state-specific parametric holding
time distributions; the parameters of these holding time distributions could, if desired,
depend on the covariates. The transition matrix and holding time distributions would
combine to form the augmented state space and augmented transition matrix as outlined
in McShane et al. (2013). Inference would follow just as in Section 6 of Bartolucci et al.
(2014) except now there would also be parameters for the holding time distributions.

The major difference between the setting of McShane et al. (2013) and the latent
setting would be in how to choose parametric forms for the holding time distributions.
While McShane et al. (2013) were able to observe holding times using their in-sample
data and thus could model these holding times directly, this approach is clearly not
possible in the latent setting. Since the default first-order Markov model assumes
geometric holding times, perhaps a reasonable approach is to first consider relatively
simple generalizations of the geometric distribution (e.g., the beta-geometric, the neg-
ative binomial, and the beta-negative binomial) as holding time distributions and test
whether the estimated parameters imply a strong divergence from the basic geometric
model. As these distributions are relatively flexible, they could likely accommodate a
wide variety of shapes for the holding times in each latent state and would thus offer
an advance over current first-order Markov models without the concomitant explosion
in the number of parameters.

3 Continuous-time extensions for unequally spaced time intervals
Many social, psychological, and biological processes evolve continuously in time.
Consequently, there may not always be a substantively compelling reason to prefer

one time interval to another when using a discrete-time Markov model. However, the
specification of the time interval is a non-trivial consideration. For example, the LM
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model fit to the criminal dataset in Section 3.3 of Bartolucci et al. (2014) appears to
fit well when T' = 6 five-year age bands covering a range of thirty years are adopted.
However, two limitations with this approach should be noted. First, the observations
were not collected at the same time for each panel member but were instead aggregated
within multiple five-year periods; inaccuracies introduced by this high-level aggrega-
tion are potentially considerable but cannot be quantified on the basis of the fitted
LM model. Second, little can be said about transition processes at a more fine-grained
level of analysis; for example, while the first-order Markov model may be sufficient
to model the holding times in each latent state with these five-year bands, it may not
be adequate for a different time window. In sum, any results obtained may be highly
dependent on potentially arbitrary choices in the selection of the time window.

Dependence on the choice of a time window can be avoided by treating latent
processes in continuous time. As an alternative to following a fixed time schedule that
may miss or mask important shifts in the latent change process of each time series,
one can time data collection in such a way that latent switches have a high probability
of occurring. For example, Bockenholt (2005) presented an analysis of an experience-
sampling study where participants were asked to report their current affective state
at five randomly selected time points during the course of a day over a period of
two weeks. Instead of discretizing the data at, for example, the hourly level, he fit a
continuous-time LM model that explicitly accounted for the random time intervals
between the self-reports. By accommodating duration-dependent holding times, this
approach provided useful insights about chronometric features of emotional states that
did not depend on the selection of a particular time window.

4 Conclusion

A stronger emphasis on the time scale of a latent switching process raises important
questions concerning how to improve the accuracy of time-structured inferences. For
example, multiple observations within a day may be sufficient to accurately describe
psychological processes on an hourly basis; on the other hand, observations taken over
the course of different weeks, months, or years provide information at a cruder time
scale and thereby potentially limit the types of change processes that can be studied.
In view of the expanding availability of longitudinal data with data structures that may
include multiple time units, modeling strategies for latent change processes should
become correspondingly more informative about the underlying time dependencies.
We highlighted approaches that go beyond the basic first-order Markov model speci-
fication and allow for continuous-time treatments, but much work remains to be done.
Future developments would benefit from considering the integration of momentary,
short-term, and long-term change processes and their facilitating or inhibiting effects
at different time scales. The general LM model presented by Bartolucci et al. (2014)
is a major step in this direction.
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